Kansallinen Maanalaisen Fysiikan Kesäkoulu Pyhäjärvi, 9. – 13. kesäkuuta 2003 1 -

-

Timo Enqvist

Kaksoisbeetahajoamisen Kokeellinen Tutkiminen

Kaksoisbeetahajoamisen Kokeellinen Tutkiminen - 2 -

- $\textcircled{1} \quad \textbf{Johdanto: Hajoamisprosessit}$
- 2 Motivaatio
- 3 Kandidaattiytimet 2β -hajoamisessa
- ④ Neutriinon massan kokeellinen määritys
- 5 Ideaalinen experimentti
- ⑥ Mooren laki
- ⑦ Taustasäteilystä

- 10 Muuta

1. Hajoamisprosessi β - ja $\beta\beta$ -hajoamiset

Normaali β -hajoaminen

$$\beta^{-}: n \longrightarrow p + e^{-} + \overline{\nu}_{e^{-}}$$

$$(Z,A) \longrightarrow (Z+1,A) + e^{-} + \overline{\nu}_{e^{-}}$$

$$\begin{array}{l} \beta^{+}: \ \mathbf{p} \longrightarrow \mathbf{n} + \mathbf{e}^{+} + \nu_{\mathbf{e}^{-}} \\ \mathbf{EC}: \ \mathbf{p} + \mathbf{e}^{+} \longrightarrow \mathbf{n} + \nu_{e^{-}} \\ (\mathsf{Z},\mathsf{A}) \longrightarrow (\mathsf{Z}-1,\mathsf{A}) + \mathbf{e}^{+} + \nu_{e^{-}} \end{array}$$

Kaksois- β^- -hajoaminen

(1) neutriinollinen tapaus $(2\beta 2\nu)$: $n_1 \longrightarrow p_1 + e_1^- + \overline{\nu}_{e_1^-}, \quad n_2 \longrightarrow p_2 + e_2^- + \overline{\nu}_{e_2^-}$ $(Z,A) \longrightarrow (Z+2,A) + e_1^- + e_2^- + \overline{\nu}_{e_1^-} + \overline{\nu}_{e_2^-}$

(2) neutriinoton tapaus $(2\beta 0\nu)$: $n_1 \longrightarrow p_1 + e_1^- + \overline{\nu}_{e_1^-}, \quad n_2 + \nu_{e_1^-} \longrightarrow p_2 + e_2^ (Z,A) \longrightarrow (Z+2,A) + e_1^- + e_2^-$

1. Hajoamisprosessi massaparaabeli

Puolikokeellinen massakaava

$$M(Z,A) = Zm(^1H) + Nm_n - B(Z,A)/c^2$$

$$\mathsf{B}(\mathsf{Z},\mathsf{A}) = \mathsf{a}_{v}\mathsf{A} - \mathsf{a}_{s}\mathsf{A}^{2/3} - a_{c}Z(Z-1)A^{-1/3} - a_{sym}(A-2Z)^{2}/A + \delta$$

- $a_{\rm v} = {\sf tilavuus termi} = 15.5 \ {\sf MeV}$
- $a_{\rm s} = {\sf pintatermi} = 16.8 \; {\sf MeV}$
- $a_{\rm c}=Coulombin \ termi=0.72 \ \text{MeV}$
- $a_{\rm sym} = symmetriatermi = 23 \ \text{MeV}$

1. Hajoamisprosessi massaparaabeli

Puolikokeellinen massakaava

$$\begin{split} \mathsf{M}(\mathsf{Z},\mathsf{A}) &= \mathsf{Z}m(^{1}\mathsf{H}) + \mathsf{N}m_{\mathrm{n}} - \mathsf{B}(\mathsf{Z},\mathsf{A})/\mathsf{c}^{2} \\ \mathsf{B}(\mathsf{Z},\mathsf{A}) &= \mathsf{a}_{\mathrm{v}}\mathsf{A} - \mathsf{a}_{\mathrm{s}}\mathsf{A}^{2/3} - \mathsf{a}_{\mathrm{c}}\mathsf{Z}(\mathsf{Z}-1)\mathsf{A}^{-1/3} - \mathsf{a}_{\mathrm{sym}}(\mathsf{A}-2\mathsf{Z})^{2}/\mathsf{A} + \boldsymbol{\delta} \\ \delta &= \mathrm{parivuorovaikutus} = \begin{array}{c} +\mathsf{a}_{\mathrm{p}}\mathsf{A}^{-3/4} & \mathsf{Z}, \,\mathsf{N} \text{ parillisia} & (\mathsf{A} \text{ parillinen}) \\ 0 & \mathsf{Z} \text{ tai } \mathsf{N} \text{ paritton} & (\mathsf{A} \text{ parillinen}) \\ -\mathsf{a}_{\mathrm{p}}\mathsf{A}^{-3/4} & \mathsf{Z}, \,\mathsf{N} \text{ parittomia} & (\mathsf{A} \text{ parillinen}) \end{split}$$

 $a_{\rm p}=34~\text{MeV}$

1. Hajoamisprosessi massaparaabeli

Puolikokeellinen massakaava

$$\mathsf{M}(\mathsf{Z},\mathsf{A}) = \mathsf{Z}m(^{1}\mathsf{H}) + \mathsf{N}m_{\mathrm{n}} - \mathsf{B}(\mathsf{Z},\mathsf{A})/\mathsf{c}^{2}$$

$$B(Z,A) = a_v A - a_s A^{2/3} - a_c Z(Z-1)A^{-1/3} - a_{sym}(A-2Z)^2/A + \delta$$

1. Hajoamisprosessi

- 7 -

Eli

- 2 β -hajoaminen voi tapahtua stabiilisuuslaakson pohjalla oleville parillis-parillisille ytimille
- Kandidaatteja on noin 40, joista suurin osa $2\beta^-$ -tyyppiä

Lisäksi

- 2β -hajoaminen on toisen kertaluvun heikon vuorovaikutuksen prosessi
 - → puoliintumisajat pitkiä
- Neutriinoton 2 β -hajoaminen rikkoo leptoniluvun säilymislakia (kielletty standardissa sähköheikossa teoriassa)
- Ensimmäiset ideat: Racah (1937) ja Furry (1939)

1. Hajoamisprosessi Energiaspektrit

Hajoamisenergia ($Q_{\beta\beta}$ -arvo)

$$Q_{\beta\beta} = \Delta({}_{\rm Z}^{\rm A} {\sf X}) - \Delta({}_{\rm Z+2}^{\rm A} {\sf X})$$

 $\Delta(\ _{Z}^{A}X$) on ytimen ($_{Z}^{A}X$) massavaje, joka on yleensä taulukoitu massan sijasta

Esim. $Q_{\beta\beta}(^{76}_{32}\text{Ge}) = \Delta(^{76}_{32}\text{Ge}) - \Delta(^{76}_{34}\text{Se}) = -73212 \text{ keV} + 75251 \text{ keV} = 2039 \text{ keV}$

2. Motivaatio

Miksi 2 β -hajoamista tutkitaan

- ✓ Neutriinofysiikan kannalta $2\beta 0\nu$ -hajoaminen (eli neutriinoton kaksoisbeetahajoaminen) on mielenkiintoisempi $2\beta 2\nu$ -hajoaminen
 - → ovatko neutriinot Dirac- vai Majorana-hiukkasia
 - → pystyy määrittämään neutriinon ABSOLUUTTISEN massan
- Viimeaikaiset kokeelliset tulokset ilmakehän, auringon ja reaktoreiden neutriinomittauksista osoittavat, että
 - 1ainakin yhdellä neutriinotyypillä on massa suurempi kuin 50 meV
 - ② neutriinot oskilloivat
 - → seuraavan sukupolven 2β0ν-kokeiden herkkyys efektiiviseen Majorana-neutriinon massaan on (pitäisi olla) tämän rajan alapuolella

3. 2 β -kandidaattiytimet kun $Q_{\beta\beta} \ge 1.7 \text{ MeV}$

Nuclide	Q_{etaeta}	Abundance	$T_{1/2}^{2 u}(ext{exp.})$	$T_{1/2}^{0 u}(ext{exp.})$	$\langle m_{ u} angle$	
	[keV]	δ [%]	[years]	(years]	[eV]	comments
48 Ca	4272	0.187	$(4.2 \pm 1.2) \times 10^{19}$	$> 9.5 \times 10^{21}$	< 8.3	(a), (b) ,
76 Ge	2039	7.61	$(1.3 \pm 0.1) imes 10^{21}$	$> 1.9 \times 10^{25}$	< 0.35	
				$> 1.6 \times 10^{25}$	< 0.33 - 1.35	
82 Se	2995	8.73	$(9.2 \pm 1.0) \times 10^{19}$	$> 2.7 \times 10^{22}$	< 5	
96 Zr	3350	2.80	$(1.4^{+3.5}_{-0.5}) \times 10^{19}$			(a)
100 Mo	3034	9.63	$(8.0 \pm 0.6) \times 10^{18}$	$> 5.5 \times 10^{22}$	< 2.1	
^{110}Pd	2000	11.72				
^{116}Cd	2805	7.49	$(3.2 \pm 0.3) imes 10^{19}$	$> 7 \times 10^{22}$	< 2.6	
^{124}Sn	2287	5.79				
130 Te	2529	34.08	$(2.7 \pm 0.1) \times 10^{21}$	$> 1.4 \times 10^{23}$	< 1.1 - 2.6	
136 Xe	2468	8.87	$> 8.1 \times 10^{20}$	$> 4.4 \times 10^{23}$	< 1.8 - 5.2	
^{148}Nd	1929	5.7				
^{150}Nd	3367	5.6	$(7.0^{+11.8}_{-0.3}) \times 10^{18}$	$> 1.2 \times 10^{21}$	< 3	
160 Gd	1730	21.86				

(a) β -hajoaminen energeettisesti sallittu.

^(b) Materiaali erittäin kallis.

4. Neutriinon Massan Määritys Kokeellisesti $2\beta 0\nu$ -hajoamisen puoliintumisajasta

Neutriinottoman 2 β -hajoamisen hajoamistodennäköisyys (puoliintumisaika) $T_{1/2}(0\nu)$ on (kääntäen) verrannollinen efektiivisen Majonara-neutriinon massan $\langle m_{\nu} \rangle$ neliöön, vaihetekijään $G_{0\nu}$ ja ytimen matriisielementtiin NME

$$T_{1/2}(0\nu)^{-1} = G_{0\nu} \times |\mathsf{NME}|^2 \times \langle m_\nu \rangle^2$$

- puoliintumisaika (tai sen alaraja) $T_{1/2}(0
 u)$ saadaan mittaamalla
- vaihetekijä $G_{0\nu}$ on helppo laskea
- ytimen matriisielementti, joka sisältää informaation ytimen rakenteesta, on vaikea laskea (osataan laskea riittävän hyvin vai muutamille 2β -ytimille)

4. 2β-puoliintumisajan Kokeellinen Määritys

Puoliintumisajan alaraja $T_{1/2}(0
u)$ saadaan kaavasta

$$T_{1/2} \sim \epsilon \cdot \delta \cdot \left[\frac{M \cdot \tau}{\Delta E \cdot R_{bg}}\right]^{1/2}$$

- ϵ on ilmaisimen tehokkuus,
- δ on kandidaattiytimen runsaus tai rikastusaste,
- au on mittausaika (vuosissa),
- M kokonaismassa (kilogrammoissa),
- ΔE ilmaisimen energiaresoluutio (FWHM) (yksikkö: keV),
- R_{bg} taustasäteilyn osuus $Q_{etaeta(0
 u)}$ -energian kohdalla (counts/(yr·keV·kg))

5. An Ideal Double- β Decay Experient

- The detector mass must be large enough to reach the 50-meV limit (\sim 1 ton of isotope)
- The $\beta\beta(0\nu)$ source must be extremely low in radioactive contamination
- Although the use of natural isotope will be less costly, the enrichment process provides a good level of purification and also results in a (usually) smaller volume detector
- A small detector volume minimises internal background (which scale with the detector volume). It also minimises external background by allowing smaller shields and structures (active detector)
- Good energy resolution
- Ease of operation due to long experiments and remote locations
- A large $Q_{\beta\beta}$ -value gives faster $\beta\beta(0\nu)$ rate and places the region of interest above many potential background activities
- A relatively slow $\beta\beta(2\nu)$ rate helps to control the experiment
- Identifying the daughter in coincidence with the $\beta\beta$ decay would eliminate most potential background events except $\beta\beta(2\nu)$
- Good spatial resolution and timing information can help reject background processes
- The nuclear theory is better understood in some isotopes than others.

6. Mooren laki

7. Taustasäteily maanalaisissa mittauksissa

 $2\beta 0
u$ -mittaukset ovat oleellisesti kamppailua ja suojautumista taustasäteilyä vastaan

Taustasäteily, joka vaikeutta
a $2\beta 0\nu$ -mittausten suorittamista, voidaan jakaa kolmeen ryhmään

- 1 Luonnollinen ja ihmisen aikaansaama radioaktiivisuus
 - uraani- ja torium-ketjut (208 Tl ja 214 Bi), 40 K
 - keinotekoisesti tuotetut 239,240 Pu, 137 Cs, 90 Sr, 42 Ar, 85 Kr
- ② Kosminen säteily
 - kosmisten hiukkasten (esimeriksi myonit) vuorovaikutus ilmaisimen kanssa
- $3 2\beta 2\nu$ -hajoaminen

8. Tehtyjä $\beta\beta(0\nu)$ mittauksia

Ensimmäinen 2 β 0 ν -mittaus : Fireman 1948 [Phys. Rev. 74 (1948) 1238]

28 eri ytimen $2\beta 0\nu$ -hajoamista tutkittu (suorissa) mittauksissa Yhtään $2\beta 0\nu$ -hajoamista ei ole havaittu, $2\beta 2\nu$ -hajoaminen on havaittu 7 ytimelle

Isotope	Experimental	Experimental	$\langle m_{\nu} \rangle$	Experiment / Reference
	$T_{1/2}(2 u)$ [yr]	$T_{1/2}(0 u)$ [yr]	[eV]	
48 Ca	$(4.2 \pm 1.2) \times 10^{19}$	$> 9.5 \times 10^{21}$	< 8.3	You Ke <i>et al.</i> , Phys. Lett B265 (1991) 53
76 Ge	$(1.3 \pm 0.1) \times 10^{21}$	$> 1.9 \times 10^{25}$	< 0.35	Heidelberg Moscow (1999)
		$>$ 1.6 $ imes$ 10 25	< 0.33 - 1.35	IGEX (1999)
82 Se	$(9.2 \pm 1.0) \times 10^{19}$	$> 2.7 \times 10^{22}$	< 5	S.R. Elliott et al., Phys. Rev. C46 (1992) 1535
100 Mo	$(8.0 \pm 0.6) \times 10^{18}$	$>$ 5.5 $ imes$ 10 22	< 2.1	ELEGANTS (2001)
$^{116} { m Gd}$	$(3.2 \pm 0.3) \times 10^{19}$	$> 7.0 \times 10^{22}$	< 2.6	F.A. Danevich et al., Phys. Rev. C62 (2000) 044501
128 Te		$>$ 7.7 $ imes$ 10 24	< 1.1 - 1.5	T. Bernatowicz et al., Phys. Rev. C47 (1993) 806
130 Te		$>$ 1.4 $ imes$ 10 23	< 1.1 - 2.6	MIBETA (2000)
¹³⁶ Xe		$> 4.4 \times 10^{23}$	< 1.8 - 5.2	GOTTHARD TUNNEL (1998)

 verrattuna nykytilanteeseen: neutriinon massan mittausherkkyys pitäisi saada vähintään pari kertaluokkaa matalammaksi

8.1. MIBETA-mittaus

Materiaali: ^{128,130}Te

Ilmaisin: BOLOMETRI

- Hyödyntävät kiteen matalaa lämpökapasiteettia matalassa lämpötilassa. Pienestä energiajätöstä syntyy merkittävä kiteen lämpötilannousu, omaavat erittäin hyvän energiaresoluution
- koostui 20 kpl TeO $_2$ kiteestä, kunkin koko $3 \times 3 \times 6$ cm 3 ja kokonaismassa 6.8 kg
- jäähdytetty ${\sim}10~{
 m mK}$
- lämpö- ja taustasuojaus:
 - ★ superpuhdasta (high-purity) elektrolyyttistä kuparia 2.2 cm
 - \star matala-aktiivista lyijyä (Roman lead, < 4 mBq/kg 210 Pb) 10 cm
 - \star tavallista lyijyä (16 \pm 4 Bq/kg 210 Pb)
- Energiaresoluutio (FWHM) 2615 keV:n kohdalla : $\Delta {\sf E} \sim$ 9 keV
- δ(¹³⁰Te) = 34% → rikastusta ei välttämättä tarvittaisi, silti 2 kidettä δ(¹³⁰Te) = 93%, ja 2 kidettä δ(¹²⁸Te) = 95%

Tausta:

- $R_{bg} \sim 0.5 \text{ counts/(yr \cdot kg \cdot keV)} @ Q_{\beta\beta}(^{130}\text{Te}) = 2529 \text{ keV}$
- suurin osa pintaosien α -aktiivisuuksista

Mittaus:

- Milanon ryhmä
- maan alla, 3500 mwe, Gran Sasso
- 66995 h \times kide \rightarrow 0.66 kg \times yr ¹³⁰Te :

 $T_{1/2}(0
u) \geq 1.44 imes 10^{23}$ yr (130 Te)

 $T_{1/2}(0
u) \geq$ 8.6 imes 10 22 yr (128 Te)

8.2. Gotthardin tunneli

Materiaali: ¹³⁶Xe

Ilmaisin: TPC (Time Projection Chamber)

- aktiivinen tilavuus 180 l koostuen 24.2 moolista Xe-kaasua (δ (136 Xe) = 62.5%) 5 atm paineessa (9.1×10^{24} atomia)
- e[−]:n lentoradan määritys → pienentää taustaa
- Energiaresoluutio (FWHM) $Q_{\beta\beta}(^{136}$ Xe) = 2481 keV kohdalla : Δ E \sim 165 keV (6.6 %)

Tausta:

- $R_{bg} \sim 0.02 \text{ counts/(yr·kg·keV)} @ Q_{\beta\beta}(^{136}\text{Xe}) = 2480 \text{ keV}$
- hallitseva tausta $2\beta 0\nu$ -alueella johtui Compton-sironneista elektroneista, jotka syntyivät luonnon aktiivisuuksien seurauksena

Mittaus:

- Caltech-Neuchatel-PSI kollaboraatio
- maan alla, Gotthardin maantietunneli (Sveitsi?)
- 6830 h + 6013 h (\sim 530 days) + 4.9 kg \times yr :

 $T_{1/2}(0
u) \geq$ 4.4 imes 10 23 yr (136 Xe)

8.3. Heidelberg & Moscow + IGEX

Heidelberg & Moscow

Ilmaisin

- 5 Ge-ilmaisinta (HPGe), $\delta(^{76}{
 m Ge}) = 86\%$, massa 10.96 kg (125.5 moolia)
- passiivinen ja aktiivinen taustasuojaus, pulssin muodon analyysi
- Energiaresoluutio (FWHM) $Q_{etaeta}(^{76}{
 m Xe})=$ 2039 keV kohdalla : $\Delta{
 m E}\sim$ 3.9 keV

Tausta:

• $R_{bg} \sim 0.06 \text{ counts/(yr\cdot kg\cdot keV)}$ (PSAn kanssa) $R_{bg} \sim 0.20 \text{ counts/(yr\cdot kg\cdot keV)}$ (ilman PSAta) @ $Q_{\beta\beta}(^{76}\text{Xe}) = 2039 \text{ keV}$

Mittaus:

- Heidelbergin ja Moskovan kollaboraatio
- maan alla, Gran Sasso
- 24 kg imes yr : $T_{1/2}(0
 u) \geq$ 1.6 imes 10 25 yr (76 Ge)

IGEX – International Germanium EXperiment

Ilmaisin

- 2 kg rikastettua 76 Ge, $\delta(^{76}$ Ge) = 88% (HPGe)
- PSA, muovituikeri kosmisten muonien vetoon
- taustasuojaus koostui 2.5 tonnista arkeologista ja 10 tonnista 70-vuotista matala-aktiivista lyijyä

- 22 -

• Energiaresoluutio (FWHM) $Q_{etaeta}(^{76}$ Xe) = 2039 keV kohdalla : Δ E \sim 4 keV

Tausta:

• $R_{bg} \sim 0.06 \text{ counts/(yr·kg·keV)}$ (PSAn kanssa) @ $Q_{\beta\beta}(^{76}\text{Xe}) = 2039 \text{ keV}$

Mittaus:

- maan alla, Danfranc Underground Laboratory (Espanja)
- 8.87 kg imes yr (116.75 moolivuotta) : $T_{1/2}(0
 u) \ge 1.57 imes 10^{25}$ yr (⁷⁶Ge)

HM versus IGEX

HM ja IGES saivat saman tuloksen puoliintumisajalle. Niiden tulkinta taustan aiheuttajalle oli kuitenkin erilainen:

• HM:

Hallitsevin taustasäteily syntyi Ge-kiteen ulkopuolella

• IGEX:

Rajoittavin tekijä oli Ge-kiteessä epäpuhtautena ollut ⁶⁸Ge

8.4. ELEGANTS-mittaus ELEctron Gamma-ray Neutrino TeleScopy

Materiaali: ¹⁰⁰Mo

Ilmaisin: Spektrometri ELEGANT V

- kolme drift-kammiota e⁻:n lentoradan mittaukseen
- muoviset tuikerit e⁻:n energioiden ja aikojen mittaukseen
- Nal(Tl) tuikerit spektrometrin ympärillä gammojen ja röntgeneiden mittauksen
- suojattu kuparilla ja lyijyllä
- kaksi ¹⁰⁰Mo lähdettä (δ = 95 %), 20 mg/cm² paksuja, kokonaismassa 171 g, asetettu keskimmäiseen kammioon: 171 g 95% ¹⁰⁰Mo → 1 × 10²⁴ atomia
- ilmaisimella heikompi havaitsemistehokkuus ja energiaresoluutio kuin germaniumilmaisimilla tai bolometreilla, mutta etuna hyvä taustasäteilyn erottelu

Tausta:

• Hallitsevan taustakomponentin $2\beta 0\nu$ -energiaikkunassa pääteltiin tulevan isotooppeista 208 Tl ja 214 Bi, jotka olivat epäpuhtauksina Mo-lähteessä ja muissa ilmaisinmateriaaleissa

Mittaus:

- maan alla, Oto Cosmo Observatory, Kamioka, (Japani)
- 7582 h + 7333 h (~620 days) : $T_{1/2}(0
 u) \ge 5.5 imes 10^{22}$ yr (100 Mo)

9. Tulevista $\beta\beta(0\nu)$ mittauksia koe voi alkaa ~10 vuoden kuluessa

Tavoitteena päästä alle 50 meV (eli paria kertalukua suurempaan puoliintumisaikaan nykymittauksiin verrattuna)

$$T_{1/2} \sim \epsilon \cdot \delta \cdot \left[rac{M \cdot au}{\Delta E \cdot R_{bg}}
ight]^{1/2}$$

- i Ilmaisimen valinta
 - ilmaisimen tehokkuus $\sim 100 \%$ \rightarrow aktiivinen ilmaisin, esim. ⁷⁶Ge, ¹¹⁶Gd, ¹³⁰Te, ¹³⁶Xe
 - hyvä energiaresoluutio (FWHM) ightarrow vähintään \sim 4 % Q_{etaeta} -arvosta
- ii Materiaalin valinta
 - HM: m(⁷⁶Ge) ~10 kg → satoja kiloja rikastettua materiaalia
 - suuri Q_{etaeta}
- iii Taustasäteily
 - → niin pieni kuin mahdollista $Q_{\beta\beta}$ -alueella
- iv Mittausaika erittäin pitkä (10 vuotta)
 - → luotettava ja helppokäyttöinen ilmaisin

9.1. Ehdotettuja Tulevaisuuden $\beta\beta(0\nu)$ mittauksia

Experiment	Source	Detector description	Sensitivity to	Reference
			$T_{1/2}^{0 u}$ [years]	
COBRA	130 Te	10 kg CdTe semiconductors	$1{ imes}10^{24}$	K. Zuber, Phys. Lett B519 (2001) 1
DCBA	150 Nd	20 kg $^{ m enr}$ Nd layers	$2{ imes}10^{25}$	N. Ishihara <i>et al.</i> , NIM A443 (2000) 101
		between tracking chambers	2.4	
NEMO-3	$100{ m Mo}$	10 kg of $etaeta(0 u)$ isotopes	4 $ imes$ 10 24	X. Sarazin, hep-ex/0006031
		(7 kg Mo) with tracking		
CAMEO	116 Cd	$1 \ { m ton} \ { m CdWO}_4$ crystals in	\geq 10 26	G. Bellini et al., EPJ C19 (2001) 43
	10	liquid scintillator		
CANDLES	48 Ca	several tons of CaF_2 crystals	1×10^{26}	T. Kishimoro et al., Ann. Rep. Osaka Univ.
	100	in liquid scintillator	20	Lab. Nucl. Studies (2000)
CUORE	¹³⁰ Te	750 kg TeO $_2$ bolometers	2×10^{26}	F.T. Avignone $et al.$, hep-ex/0201038
EXO	136 Xe	1 ton enr Xe TPC (gas or liquid)	$8{ imes}10^{26}$	F.A. Danevich <i>et al.</i> , PR C62 (2000) 044501
GEM	76 Ge	1 ton enr Ge diodes in liquid N	7×10^{27}	Yu.G. Zdesenko et al., J.Phys. G27 (2001) 2129
GENIUS	76 Ge	1 ton 76 Ge (enr. 86%) diodes	1×10^{28}	H.V. Klapdor-Kleingrothaus, hep-ph/0103074
		in liquid N		
GSO	160 Gd	2 ton Gd_2SiO_5 crystal scintillator	$2{ imes}10^{26}$	F.A. Danevich <i>et al.</i> , NP A694 (2001) 375
	-	-		S.C. Wang $et al.$, hep-ex/0009014
Majorana	76 Ge	0.5 ton 86% segmented enr Ge diodes	3×10^{27}	C.E. Aalseth et al., hep-ex/0201021
MOON	100 Mo	34 ton nat Mo sheets between	1×10^{27}	H. Ejiri <i>et al.,</i> PRL85 (2000) 2917
		plactic scintillator		
Xe	136 Xe	1.56 ton of enr Xe in liquid sci.	$5{ imes}10^{26}$	B. Caccianiga <i>et al.</i> , ApP14 (2001) 15
XMASS	136 Xe	10 ton of liquid Xe	3×10^{26}	S. Moriyama et al., XENON01 Workshop, Tokyo

9.2. CUORE Cryogenic Underground Observatory for Rare Events

MIBETA-ilmaisimen seuraaja, Gran Sasso Underground Laboratory

Ilmaisin: Bolometri

- 100 kpl TeO₂ kiteitä, kokonaismassa 750 kg
- toimintalämpötila ${\sim}10~{
 m mK}$
- hyvä energiaresoluutio: 5-10 keV (FWHM) 2.5 MeV kohdalla

Suojaus ja Tausta:

- puhdasta kuparia ja matala-aktiivista lyijyä
- arvio: 0.5 0.05 counts/(kg·keV·yr)

Herkkyys: $T_{1/2}(0
u) \geq$ (1-5) imes 10 25 yr ightarrow m $_{
u} \leq$ 0.05 - 0.2 eV

Prototyyppi: CUORICINO (proposal hyväksytty)

- 56 kpl TeO₂, 42 kg
- $T_{1/2}(0
 u) \ge 10^{24}$ 10^{25} yr ightarrow m $_{
 u} \le 0.1$ 0.5 eV

9.3. EXO The Enriched Xenon Observatory

29 -

Ilmaisin:

- 10 tonnia 60-80% rikastettua ¹³⁶Xe
- pyrkimys havaita myös tytärydin ¹³⁶Ba
- joko kaasumainen Xe TPC, tai nestemäinen Xe (LXe) tuikeilmaisin
- TPC: kaksi 35 m³ moduulia noin 20 atm, 8.4 tonnia Xe LXe: ∼sama massa, mutta paljon pienempi koko

Lab.: WIPP - Waste Isolation Pilot Plant, USA

Prototype: 100 kg ilmaisin ilman Ba-ytimen havaitsemista hyväksytty

9.4. GENIUS (GEM) GErmanium NItrogen Underground Setup (Germanium Experiment for neutrino Mass)

HM-mittauksen seuraaja, Gran Sasso

Idea: HM-mittauksessa dominoiva taustakomponentti Ge-ilmaisimen ulkopuolelta

(**X** Majorana)

→ Ge-ilmaisin suojataan paksulla nestetyppikerroksella

(→ LN korvataan HP-vedellä)

Ilmaisin:

- 1 tonni 86% rikastettua ⁷⁶Ge
- energiaresoluutio (FWHM) ${\sim}6$ keV eli ${\sim}0.3$ %
- koko 12 m pitkä ja 12 m halkaisija

Tausta: LN-suojaus → tausta 300 kertaa pienempi kuin nykyisissä mittauksissa

Herkkyys: 10 yr mittausaika (7 × 10²⁷ atomia ⁷⁶Ge) $\rightarrow T_{1/2}(0\nu) \ge 10^{28}$ yr ja m_{ν} ≤ 0.015 - 0.05 eV

Prototyyppi: GENIUS-TF rakenteilla

9.5. Majorana

Idea: IGEX-mittauksessa taustan pääteltiin syntyvän ⁶⁸Ge-ytimistä (epäpuhtautena ⁷⁶Ge:ssa)

→ segmentointi ja PSA pienentämään taustaa (¥ GENIUS)

Ilmaisin:

- 210 HPGe, $\delta(^{76}\text{Ge}) = 86 \%$
- kokonaismassa 500 kg

Suojaus:

- konventionaalinen matala-aktiivinen gryostaatti, hyvin puhdasta kuparia (< 25 $\mu{\rm Bq/kg}^{226}{\rm Ra}$, 9 $\mu{\rm Bq/kg}^{228}{\rm Th}$)
- ilmaisimet suojattu matala-aktiivisella lyijyllä ja kuparilla

Tausta: segmentoidut ilmaisimet ja PSA $\rightarrow \sim 0.01 \text{ counts}/(\text{kg}\cdot\text{keV}\cdot\text{yr})$

Tavoite: $T_{1/2}(0\nu) \ge 10^{27}$ yr ja m $_{\nu} \le 0.05$ - 0.15 eV

10. Onko $2\beta 0\nu$ jo havaittu ?

 H.V. Klapdor-Kleingrothaus et al., Modern Physics Letters A16 (2001) 2409 - 2420
 Evidence for Neutrinoless Double Beta Decay

$$^{76}\text{Ge}: T_{1/2}(0
u) = (0.8 - 18.3) \times 10^{25} \text{ yr}$$
 ($ightarrow$ best value: $T_{1/2} = 1.5 \times 10^{25} \text{ yr}$)

- $\bullet < m_{
 u} > = (0.11 0.56) \text{ eV}$
- C.A. Aalseth et al., Modern Physics Letters Axx (200x) xxxx
 Comment on "Evidence for Neutrinoless Double Beta Decay"

EVIDENCE FOR NEUTRINOLESS DOUBLE BETA DECAY

H.V. KLAPDOR-KLEINGROTHAUS^{1,3}, A. DIETZ¹, H.L. HARNEY¹, I.V. KRIVOSHEINA^{1,2} ¹Max-Planck-Institut für Kernphysik, Postfach 10 39 80, D-69029 Heidelberg, Germany ²Radiophysical-Research Institute, Nishnii-Novgorod, Russia ³Spackempan of the CENUIS and HEIDEL BERG MOSCOW Collaborations

³Spokesman of the GENIUS and HEIDELBERG-MOSCOW Collaborations, e-mail: klapdor@gustav.mpi-hd.mpg.de, home page: http://www.mpi-hd.mpg.de/non_acc/

The data of the HEIDELBERG-MOSCOW double beta decay experiment for the measuring period August 1990 - May 2000 (54.9813kg y or 723.44 molyears), published recently, are analyzed using the potential of the Bayesian method for low counting rates. First evidence for neutrinoless double beta decay is observed giving first evidence for lepton number violation. The evidence for this decay mode is 97% (2.2 σ) with the Bayesian method, and 99.8% c.l. (3.1 σ) with the method recommended by the Particle Data Group. The half-life of the process is found with the Bayesian method to be $T_{1/2}^{0\nu}=(0.8-18.3)\times 10^{25}$ y (95% c.l.) with a best value of 1.5×10^{25} y. The deduced value of the effective neutrino mass is, with the nuclear matrix elements from ¹, $\langle m \rangle = (0.11 - 0.56) \text{eV} (95\%)$ c.l.), with a best value of 0.39 eV. Uncertainties in the nuclear matrix elements may widen the range given for the effective neutrino mass by at most a factor 2. Our observation which at the same time means evidence that the neutrino is a Majorana particle, will be of fundamental importance for neutrino physics. PACS. 14.69.Pq Neutrino mass and mixing - 23.40.Bw Weak-interaction and lepton (including neutrino) aspects - 23.40.-s Beta decay; double beta decay; electron and muon capture.

The neutrino oscillation interpretation of the atmospheric and solar neutrino data, deliver a strong indication for a non-vanishing neutrino mass. While such kind of experiments yields information on the difference of squared neutrino mass eigenvalues and on mixing angles, the absolute scale of the neutrino mass is still unknown. Information from double beta decay experiments is indispensable to solve these questions ^{11,10}. Another important problem is that of the fundamental character of the neutrino, whether it is a Dirac or a Majorana particle ^{2,3}. Neutrinoless double beta decay could answer also this question. Perhaps the main question, which can be investigated by double beta decay with high sensitivity, is that of lepton number conservation or non-conservation.

Double beta decay, the rarest known nuclear decay process, can occur in different modes:

KK-Evid-InJ ModLettA: submitted to World Scientific on January 24, 20021

Modern Physics Letters A, © World Scientific Publishing Company

COMMENT ON "EVIDENCE FOR NEUTRINOLESS DOUBLE BETA DECAY"

33

C. E. Aalseth¹, F. T. Avignone III², A. Barabash³, F. Boehm⁴, R. L. Brodzinski¹, J. I. Collar⁵, P. J. Doe⁶, H. Eijri⁷, S. R. Elliott⁶^{*} E. Fiorini⁸, R.J. Gaitskell⁹, G. Gratta¹⁰, R. Hazama⁶, K. Kazkaz⁶, G. S. King III², R. T. Kouzes¹, H. S. Miley¹, M. K. Moe¹¹, A. Morales¹², J. Morales¹², A. Piepke¹³, R. G. H. Robertson⁶, W. Tornow¹⁴, P. Vogel⁴, R. A. Warner¹, J. F. Wilkerson⁶ ¹Pacific Northwest National Laboratory, Richland, WA, 99352, USA ²Department of Physics and Astronomy, University of South Carolina, Columbia, SC 29208, USA ³Institute for Theoretical and Experimental Physics, Moscow 117259, Russia ⁴Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA ⁵Enrico Fermi Institute, University of Chicago, Chicago, IL 60637, USA ⁶Center for Experimental Nuclear Physics and Astrophysics, University of Washington, Seattle, WA 98195, USA ⁷International Institute for Advanced Studies, Kizu-cho, Kyoto, 619-0025 and JASRI, SPring-8, Hyogo 679-5198, Japan ⁷Emeritus, Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567, Japan ⁸Dipartimento di Fisica dell' Universita' di Milano-Bicocca and Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Italy ⁹Department of Physics, Brown University, Providence, RI 02912, USA ¹⁰ Physics Department, Stanford University, Stanford, CA 94305, USA ¹¹Emeritus, Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA ¹²Laboratory of Nuclear and High Energy Physics, University of Zaragoza, 50009 Zaragoza, Spain ¹³Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA ¹⁴Department of Physics, Duke University, Durham, NC 27708, USA

> Received (received date) Revised (revised date)

We comment on the recent claim for the experimental observation of neutrinoless doublebeta decay. We discuss several limitations in the analysis provided in that paper and conclude that there is no basis for the presented claim.

1. Introduction

22 May 2002

v3

arXiv:hep-ex/0202018

In a paper by Klapdor-Kleingrothaus, Dietz, Harney, and Krivosheina¹ (Hereafter referred to as KDHK) evidence is claimed for zero-neutrino double-beta decay in ⁷⁶Ge. The high quality data, upon which this claim is based, was compiled by the careful efforts of the Heidelberg-Moscow collaboration, and is well documented².

*Corresponding author

11. Rikastuksesta

Ainoastaan Venäjällä olevat rikastuslaitokset pystyvät tällä hetkellä tuottamaan satoja kiloja rikastettua materiaalia

Electro Chemical Plant (ECP), Krasnojarsk

Rikastustuotto tällä hetkellä

- 76 Ge : \sim 20 kg/yr (laitteistolla, jota ei ole koskaan käytetty uraanin rikastukseen)
- 136 Xe : ~300 kg/yr

Investoinneilla

- 76 Ge : \sim 30 kg/yr \rightarrow \sim 50 kg/yr \rightarrow \sim 100 kg/yr
- 136 Xe : \sim 2 tonnia/yr

Referenssiluettelo

- Steven R. Elliott, Experiments for Neutrinoless Double-Beta Decay, Int. Journal of Modern Physics A (2003), nucl-ex/0301011
- Steven R. Elliott, Petr Vogel, Double Beta Decay
 Annu. Rev. Nucl. Part. Sci 52 (2002) 115-151
- ③ Yuri Zdesenko, Colloquium: The future of double β decay Rev. Modern Physics 74 (2002) 663 - 684