Timo Enqvist

CUPP Centre for Underground Physics in Pyhäsalmi timo.enqvist@oulu.fi

Astroparticle Physics

CUPP, Cosmic Rays, and Supernova Neutrinos

JYFL, October 25, 2005

Content of the Lecture

- Underground Laboratories & Underground Physics
 - CUPP
- Cosmic Rays
 - Introduction
 - Pierre Auger Array & KASKADE-Grande
 - EMMA A new Cosmic Ray Experiment
- Supernova Neutrinos
 - Neutrino & Supernova properties
 - Supernova SN1987A
 - A new TPC for SN detection

Underground Laboratories and Underground Physics

World's Underground Laboratories mines and tunnels

The three largest underground laboratories at the moment are

- SNO, Sudbury, Canada 🖙 Measurement of solar neutrinos
- Kamioka, Japan 🖙 Measurement of atmospheric neutrinos
- Gran Sasso, Italy

Underground Laboratories

- There exists \sim dozen underground laboratories in the World
- Both tunnels and mines
 - mines have slant surface (better shielding)
 - tunnels have easier access (by cars)
- New caverns recently built for SNO and Canfranc, Extensions planned for Frejus and Boulby, New underground laboratory also expected in the US
- The depth usually given in metre-water-equivalent units (mwe): mwe = vertical distance [m] × rock density [g/cm³] (in Pyhäsalmi: 1400 m ⇐⇒ 1400 × 2.85 = 4000 mwe)
- The future experiment require megaton-scale detectors
 - depth \leq 4000 mwe
 - such caverns still doesn't exist

The Sudbury Neutrino Observatory (SNO) an example

The laboratory

- large centre of mining operation
- the Depth : 2073 m (6010 mwe)
- access by elevator and narrow tunnel

The detector

- water Čerenkov detector
- spherical, diameter 12 m
- 1000 tons of ultrapure H_2O or D_2O
- ultrapure H₂0 shield
- 9450 20-cm PMTs
- \sim 55% of the light produced 7 m of the centre of the detector will strike a PMT

Heavy Water Čerenkov Detector at SNO

Underground Physics

Generally all experiments related to weak interaction processes should be performed underground (or underwater)

- neutrino studies (of astroparticle sources)
 - sun, supernova, air shower (atmosphere)
 - large-scale detectors
- (neutrinoless) double-beta decay
 - small- to medium-scale detectors & ultra-clean materials
- dark matter experiments
 - small- to medium-scale detectors & ultra-clean materials
- geoneutrinos (neutrinos from the Earth's core and crust)
 - large-scale detectors
 - distant from nuclear reactors (Hawaii)
- cosmic-ray experiments
 - usually at the surface, but some experiments have been done
- neutrino factory (future)
 - accelerator-produced neutrinos

What Drives Physics Underground ?

• Goal: protection from cosmic rays

- cosmic-ray (secondary) flux at the surface ${\sim}150~\text{m}^{-2}{\cdot}\text{s}^{-1}$
- Electrons, positrons, fotons and hadrons stop into the surface
- Muons may penetrate extremely deep underground
 - direct background from primary muons
 - secondary background from spallation reaction products (neutrons)
- Needs hundreds of metres of rock for shielding

In the Figure, the reduction of the muon flux in the Pyhäsalmi mine is shown as a function of the depth

Underground Laboratories

Pyhäsalmi Mine

Pyhäsalmi mine

The Pyhäsalmi Mine

- The deepest operational base-metal mine in Europe, run by Pyhäsalmi Mine Ltd (owned by Inmet Mining Corporation, Canada)
- Produces zinc, copper and pyrites
- The mining operation in the new mine started in 2001
- The new mine extends down to 1440 metres underground. The old mine, where mining operation is not active, extends to 1050 metres, and can be used for scientific experiments
- Access via the decline by trucks or fourwheel vechicles
- Low background radiation

Advantages of the Pyhäsalmi Mine

• DEEP

The deepest operational base-metal mine in Europe (1410 m, 4000 mwe)

• DISTANCE

A long way to CERN (2288 km) and far away from nuclear reactors

• VOLUME

New large-volume spaces and cavern can be excavated

- INFRASTRUCTURE Good traffic conditions around a year, modern infrastructure
- Very stable bedrock
- Public local support

CUPP

Centre for Underground Physics in Pyhäsalmi mine

The aim is to establish an international laboratory of underground physics (particle and nuclear physics)

- first ideas about the laboratory around 1993 when the mining operation seemed to stop
- EU project fundings for 1997 1999, 1999 2001, 2001 2003, and 2004 – 2006
- in the beginning background properties were studies, and the suitability for scientific work
- first larger-scale experiment now under construction: cosmic-ray experiment EMMA
- second experiment under consideration: TPC supernova detector
- work still in the old part of the mine
- Future (large-scale) possibilities: LENA, neutrino factory

Cosmic Rays

General

Introduction on Cosmic Rays (1)

- Studied several decades (since 1912) by balloons, arrays, satellites, ...
- Historical reasons: cosmic rays $\iff \gamma$, e^- , p, heavy nuclei, ...
- Two or three changes in the slope of the spectrum
 - knee at E $\sim 10^{15} 10^{16} \mbox{ eV}$
 - ankle at E \sim 10^{18} $10^{19}~eV$
 - different production or acceleration mechanism
- GZK-cutoff at E $\sim 10^{19} 10^{20} \mbox{ eV}$ eV ollision with CMB
- In energy, the spectrum is reliably known up to GZK-cutoff

All-Particle Spectrum of Cosmic Rays

Introduction on Cosmic Rays (2)

- The composition is poorly known
 - mostly protons, also alphas, ..., iron
- Aim of the research:
 Find out cosmic ray sources and origins
- Difficult of observe and locate directly
 - $\bullet~\gamma{\rm 's}$ points to the source
 - charged particles bend in the magnetic fields
- Method: measure the cosmic ray composition
 - mass and/or elemental
 - can be measured directly up to ${\sim}10^{14}$ eV (100 TeV)
 - at higher energies indirect measurement: Extensive Air Showers (EAS)
 - developing theoretical models that can produce measured composition

Introduction on Cosmic Rays (3)

- Source candidates (no experimental evidence yet):
 - supernova remnants (shock waves)
 - pulsars (neutron stars), AGN's (quasars), GRB's, decay of massive particles, ...
 - $< \sim 10^{18}$ eV: galactic origin
 - > $\sim 10^{18}$ eV: extra-galactic origin
 - ankle could represent transition from galactic sources to extragalactic sources (?)
- Cosmic Ray research at high energies (knee and above) is very active (tens of different experiment)
 - at highest energies: Pierre Auger
 - at the knee region: KASKADE-Grande
- Results VERY model dependent
 - interactions at these high energies not known accurately enough (LHC may help)

Introduction on Extensive Air Shower

- High-energy cosmic particle hits into atmosphere atom
- (Extensive) Air Shower is created
 - contains ${\sim}10^6$ particles: p, n, π , κ , e⁻, e⁺, γ 's
- Most of particles stop on the Earth surface
 - muons may penetrate several hundreds of metres underground
 - neutrinos penetrate Earth
- Consequence
 - muons cause background for sensitive neutrino experiments
 - can also be studied underground
 Second EMMA

Pierre Auger Array

KASCADE

Cosmic Rays

EMMA – Experiment with MultiMuon Array

Introduction of the Experiment

The aim of the EMMA is to detect high-energy muons formed in the upper part of an air shower, by filtering out low-energy muons with the rock overburden

 To be carried out in the depth of 85 metres in the Pyhäsalmi mine, Pyhäjärvi, Finland.
 The cut-off is about 45 GeV

The purpose is

- ① to study the composition of cosmic rays at the knee region $(10^{15} 10^{16} \text{ eV})$, and
- ② to learn something from the physics of the upper part of the air shower
- Existing caverns and existing detectors are used
 Iow-cost experiment
- Not the first underground cosmic-ray experiment, but EMMA is enable to measure the Lateral Distribution Function of muons

Detector Layout at the depth of 85 metres

Muon LDF

Kouluprojekti

- Laaja verkosto kosmisen säteilyn ilmaisimia
 - koulujen yhteyteen läpi koko Suomen
 - Tyhäsalmen laboratorioon pintailmaisimet
- Koulut osallistuvat rakentamiseen ja ylläpitoon
 tiede- ja teknologiaoppimishanke
 innostaa lapsia tieteeseen, opettajat apuna
- Suunnitteluvaiheessa, rahoitusta jonkin verran
- Euroopassa ja Amerikassa vastaavia projekteja
 Thteistyö Euroopassa käynnistymässä
- Koordinointi
 - The Koordinointiryhmä perustettu
 - (pj. Prof. Jukka Maalampi, JYFL)
 - monet yliopistot ja AMK:t mukana
 - herättänyt jo kiinnostusta monessa koulussa
- Keskuspaikka CUPPin yhteyteen Pyhäjärvelle

Supernova Neutrinos

General

(Short) Introduction on Neutrino Properties

- Three flavors (types): **electron**, **muon** and **tau** neutrinos, and their antineutrinos
- Recent data from SNO and from SK demonstrated that neutrinos oscillate
 meutrinos have mass
 - SK : atmospheric $\nu_{\mu} \longrightarrow \nu_{x} \pmod{\nu_{e}}$ SNO : solar $\nu_{e} \longrightarrow \nu_{\mu\tau}$
- Interact extremely weakly with matter
 - Observation of neutrinos gives information on the source

 [¬] investigation of the supernova core collapse or the interior of the Sun (~2 sec for ν to get from centre to surface, gammas are captured)
 - very difficult to observe experimentally (needs huge-size detectors)
- Neutrino sources
 - Sun ($\nu_{\rm e}$), Supernova (all)
 - Atmosphere $(\nu_{\mu\tau})$
 - Nuclear reactors, Earth's crust (eta-decay of fission fragments, $ar{
 u}_{
 m e}$)
 - Accelerator (super- and β -beams, $\nu_{\rm e}$, $\bar{\nu}_{\rm e}$; muon factory, $\nu_{\mu\tau}$)

Supernova Properties (1) Energy release

$$\Delta \mathsf{E}_\mathsf{B} \approx \frac{3}{5} \frac{\mathsf{G}\mathsf{M}^2_\mathsf{NS}}{\mathsf{R}_\mathsf{NS}} - \frac{3}{5} \frac{\mathsf{G}\mathsf{M}^2_\mathsf{core}}{\mathsf{R}_\mathsf{core}} \approx 3 \times 10^{59} \ \mathsf{MeV} \approx 3 \times 10^{46} \ \mathsf{J}$$

- Kinetic energy of explosion $\approx 10^{-2} \cdot \Delta E_B$
- EM radiation (incl. optically visible part) pprox 10⁻⁴· Δ E_B
- Rest, ~99%, of the energy is taken away by neutrinos
 ∞ ~1% of ν_e from an initial breakout burst
 ∞ ~99% are νν̄ pairs of all flavors from the cooling phase

Supernova Properties (2) Neutrino emission

- The Energy of emitted neutrinos can be described by Boltzmann distribution $\langle \mathsf{E}_{\nu_{e}} \rangle \approx 11 \text{ MeV}$ $\langle \mathsf{E}_{\bar{\nu}_{e}} \rangle \approx 16 \text{ MeV}$ $\langle \mathsf{E}_{\nu_{\mu\tau}} \rangle \approx 25 \text{ MeV}$
- Neutrinopulse is quite short:
 ☞ duration ~ 10 20 s
- Luminosities \sim equal: $\Rightarrow L_{\nu_{e}}(t) \approx L_{\bar{\nu}_{e}}(t) \approx L_{\nu_{\mu\tau}}(t)$
- Number of emitted neutrinos: $\sim 10^{58}$ of all types
- Number of expected supernova explosions in our Galaxy: \sim 3 \pm 1 per century
- The latest (observed) SN in our Galaxy: October 9, 1604

Supernova Properties (3) Core collapse

Supernova Neutrinos what they can tell ?

Neutrino Physics

- neutrino absolute mass (with some accuracy)
- neutrino oscillations

Supernova Core Collapse Physics

- Information about
 - explosion mechanism, supernova evolution in time
 - convection, hydrodynamics instabilities
 - proto neutron-star EoS
 - black hole formation mechanism
 - neutrino roles in r-process (in production of heavy elements)
- Signatures (by measuring flavour, energy and time structure of the neutrino burst)
 - pulse risetime and shape
 - breakout, luminosity cutoff (+ black hole formation)
 - pulsation
 - cooling

Supernova 1987A

Supernova 1987A (1) General Properties

- Astronomical Event of the Decade
- 167000 light years away, in the Large Magellanic Cloud (5 times further than the average distance expected for a Galactic supernova)
- Only stellar collapse, so far, from which neutrinos have been detected
- 20 neutrinos were detected by Kamiokande and IMB (Irvine Michigan Brookhaven experiment) detectors (water Čerenkov)
- In addition, some events were also registered at Baksan and Mont Blanc detectors (liquid scintillator)

Supernova 1987A (2) Kamiokande II and IMB Detectors

- Both detectors were designed to search for proton decay
- Water Čerenkov detectors, surrounded by PMTs
- Kamiokande II at 2700 mwe, IMB at 1570 mwe
- IMB had about 10 times larger mass
 - it was less sensitivity to low-energy events because of higher background rates
 - it also had lower efficiency in the collection of Čerenkov light
- Energy threshold in the IMB was about 20 MeV, and in Kamiokande II about 6 MeV

Supernova 1987A (3) Measured Neutrino Signal

Event	Time(UT)	Energy	Angle	Event	Time(UT)	Energy	Angle
no.	on Feb. 23	[MeV]	[deg.]	no.	on Feb. 23	[MeV]	[deg.]
K-1	7:35:35.00	20.0±2.9	18 ± 18	IMB-1	7:35:41.37	38±7	80±10
K-2	35.11	13.5 ± 3.2	40±27	IMB-2	41.79	37±7	44 ± 15
K-3	35.20	7.5 ± 2.0	108 ± 32	IMB-3	42.02	28±6	56 ± 20
K-4	35.32	9.2 ± 2.7	70 ± 30	IMB-4	42.52	39±7	65 ± 20
K-5	35.51	12.8 ± 2.9	$135{\pm}23$	IMB-5	42.92	36±9	33 ± 15
K-6	35.69	6.3 ± 1.7	68±77	IMB-6	44.06	36±6	51 ± 10
K-7	36.54	35.4±8.0	$32{\pm}16$	IMB-7	46.38	19 ± 5	42±20
K-8	36.73	21.0 ± 4.2	$30{\pm}18$	IMB-8	46.96	22 ± 5	$104{\pm}20$
K-9	36.92	19.8 ± 3.2	38±22				
K-10	44.22	8.6±2.7	122 ± 30				
K-11	45.43	13.0 ± 2.6	49±26				
K-12	47.44	$8.9{\pm}1.9$	91±39				

Supernova 1987A (4) Measured Energy Spectrum

Supernova 1987A (5) What were learned ?

- about 600 scientific articles published (of all topics)
- Pre-existing calculations were in quite good agreement with the observed neutrino burst
- Quite low statistics, and only v
 _e were detected
 ☞ important aspects of the theory could not be tested, for example, most of the energy is believed to be emitted in higher-temperature muon and tau neutrinos (and anti-neutrinos)
- New limits were obtained, for example, on the mass, charge, magnetic moment, decay rate, limiting velocity

Supernova Neutrinos

A Spherical TPC Detector for Supernova Neutrino Observation

Experimental Setup

Idea of Yannis Giomataris (Saclay) et al.

- arXiv:hep-ex/0503029: A network of neutral current spherical TPC's for dedicated supernova detector
- developed from the NOSTOS proposal: NIMA 530 (2004) 330

High-pressure (10 bar Xe, 30–60 bar Ar) diameter 4–6 metres, Micromegas for readout

One possible site of the network: Pyhäsalmi Mine (660-level)

Neutrino coherent scattering <a>>

+ large cross section: $\sigma(E_{\nu}) \approx 10^{-38}$ cm² MeV⁻² at $E_{\nu} = 20$ MeV, xenon

- challence to measure low-energy recoil (for Xe \sim 7 keV in average)

Supernova Neutrino Events a simple estimation (1)

• Supernova neutrino spectrum:

$$f_{\nu}(\mathsf{E}_{\nu}) = \frac{1}{\mathsf{T}_{\nu}^{3}\mathsf{F}_{2}(\eta)} \frac{\mathsf{E}_{\nu}^{2}}{\exp\{\mathsf{E}_{\nu}/\mathsf{T}_{\nu} - \eta\} + 1}$$

 $(\mathsf{T}_{
u}, \eta) =$ (4,0), (5,0), (8,0) for $u_e, \, ar{
u}_e, \,
u_x.$

• Luminosity at the Earth: $\mathsf{L}_{\nu} = \frac{1}{4\pi \mathsf{D}^2} \, \frac{\mathsf{W}_{\nu}}{<\mathsf{E}_{\nu}>}$

 $W_{\nu} = 2 \times 10^{59}$ MeV (total), $\langle {\sf E}_{\nu} \rangle = {\sf T}_{\nu} |{\sf F}_{3}(\eta) | / {\sf F}_{2}(\eta)$, D = 10 kpc.

• Cross section:

$$\sigma(\mathsf{E}_{\nu}) = \mathsf{C} \times \mathsf{N}_{\mathsf{n}}^2 \times \mathsf{E}_{\nu}^2, \quad \mathsf{C} \approx 4.242 \times 10^{-45} \ \mathsf{cm}^2 \ \mathsf{MeV}^{-2}$$

Supernova Neutrino Events a simple estimation (2)

• Number of events:

$$N_{\nu} = N_{at} \int L_{\nu} \times f_{\nu}(E_{\nu}) \times \sigma(E_{\nu}) \ dE_{\nu}$$

- Integration (for xenon): $N_{\nu_e} = 10$, $N_{\bar{\nu}_e} = 15$, $N_{\nu_x} = 70$ (total = 95). For argon, factor 12 smaller (total = 8).
- No oscillations assumed.
- Ideal detector (no energy threshold, no quenching, ...).
- Detector: $\Phi = 4 \text{ m}$, p = 10 atm.
- N_{at} is number of atoms.

Layout of 660-level

- The Depth of 660 metres corresponds to 1900 m.w.e
- Available space for experiments (yellow)
 ☞ largest area ~ 30 m × 10 m × 8 m
- Old lunch room (green area)
- Muon flux measured close to lunch room:

Number of muons crossing an area of 12 m² in 20 sec: $N_{\mu} = 0.8$