Timo Enqvist University of Oulu Oulu Southern institute

lecture cource on

Astroparticle physics

15.09.2009 - 15.12.2009

B. Lecture Contents

Astroparticle physics: topics and tentative schedule

 high-energy cosmic rays 	(15.09.	and 22.09.) 🕸
past, current and future experiments		(06.10.)
 Sun (stars) and solar neutrinos 		(13.10.)
► supernovae, supernova and relic supernova n	eutrinos	(27.10.)
 atmospheric and geoneutrinos 		(03.11.)
 double beta-decay 		(10.11.)
 dark matter 		(17.11.)
proton decay		(24.11.)
background in underground measurements		(01.12.)
 cosmic microwave background, Big Bang nuc gravitational waves 	cleosynth	lesis, (15.12.)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

5 Atmospheric and geoneutrinos

- 5.1 Geoneutrinos General
- 5.2 Geoneutrinos Measurement of KamLAND
- 5.3 Geoneutrinos LENA at Pyhäsalmi
- 5.4 High-energy neutrinos Atmospheric neutrinos

- ► 5.5 High-energy neutrinos Accelerator neutrinos
- ▶ 5.6 Ultra-high-energy neutrinos

Anti-neutrinos from the Earth – A new probe to study the interior of the Earth

- What is the amount of uranium (U), thorium (Th) and kalium (⁴⁰K) in the Earth?
- Test a fundamental geochemical paradigm: the Bulk Silicate Earth
- Determine the radiogenic contribution to terrestial heat flow

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A georeactor at the core of the Earth?

Heat production in the Earth

- The total heat flow emitted by the Earth is approximately 45 TW
 - \blacktriangleright equivalent to the heat production of 15000 power plants of 1000 MW_{el}
- The heat flow has been measured at approximatey 25000 locations at the surface of the Earth
 - the map shows large variations (factor of 20) between the locations
- The heat is generated, for example, by the natural radioacivity inside the Earth

- Uranium (U), Thorium (Th), and Potassium (K)
- The same radioactive decays are believed to be the source of geoneutrinos

Anti-neutrinos from the Earth – The Earth heat flow

Models for the Earth

- The deepest drill hole approximately 12 km
 - at Kola Peninsula, Russia
 - initial aim 15 km, 12.261 km reached at 1989 (T = 180 °C)
 - difficult to drill much deeper due to high temperature and pressure (15 km : T = 300 °C)
 - approximately one-third on the Baltic continental crust
- Information on the deeper parts obtained/derived from
 - the speed, reflection and refraction of seismic waves
 - the moment of inertia and precession motion of planets
 - physical, chemical and minerological data obtained from meteorites
- The most accepted model of the Earth composition is the Bulk Silicate Earth model (BSE)
 - direct and indirect information combined
 - estimated radiogenic heat production of U, Th, and K in the crust and mantle (r<3000 km) not explained correcly

Models for the Earth

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Anti-neutrinos from the Earth

Uranium, thorium and potassium in the Earth release heat together with anti-neutrinos $% \left({{{\left[{{{\left[{{{c_{1}}} \right]}} \right]}_{i}}}} \right)$

▶
$$^{238}U \longrightarrow ^{206}Pb + 8 \cdot {}^{4}He + 6e^{-} + 6\bar{\nu}$$

▶ $^{232}Th \longrightarrow {}^{208}Pb + 6 \cdot {}^{4}He + 4e^{-} + 4\bar{\nu}$
▶ $^{40}K \longrightarrow {}^{40}Ca + e^{-} + \bar{\nu}$ (K1, 88.8 %)
 $^{40}K + e^{-} \longrightarrow {}^{40}Ar + \nu$ (K2, 11.2 %)

Decay chain	Q	$t_{1/2}$	E _{max}	ϵ_{H}	$\epsilon_{ar{ u}}$
	[MeV]	[10 ⁹ yr]	[MeV]	[W/kg]	$[kg^{-1}\cdots^{-1}]$
U	51.7	4.47	3.26	0.95×10^{-4}	7.41×10 ⁷
Th	42.8	14.0	2.25	0.27×10^{-4}	1.63×10^{7}
K1	1.32	1.28	1.31	0.36×10^{-8}	2.69×10^{4}

Anti-neutrinos from the Earth - decay chains

Anti-neutrinos from the Earth

- ► High-energy part of neutrinos from U and Th are above the 1.8-MeV threshold for inverse beta decay: v

 v

 + p → n + e⁺
 - can be detected, for example, by liquid scintillation detector
- ► Different components may be distinguished due to different energy spectra: v with highest energy comes from uranium
- Main source of background: neutrinos from nuclear reactors
 - energy spectra not complete overlapping: nuclear reactor neutrinos originate from fission fragments (geoneutrinos from the chains)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

neutrino oscillations (depends on energy and distance)

Anti-neutrinos from the Earth - the energy spectrum

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

KamLAND - Kamioka Liquid scintillator Antineutrino Detector - 1 kton, depth 1 km

KamLAND - measured energy spectrum

Results & Outlook

- ▶ The total number of observed $\bar{\nu}_e$ was 152 in the energy window relevant for geo- ν 's
- ▶ Background events: 127±13
 - reactor neutrinos: 80.4±7.2
 - ► radioimpurities of ²¹⁰Pb: 42±11 (α -decay of ²¹⁰Po: α + ¹³C \longrightarrow ¹⁶O + n) can be purified; result of Borexino \implies factor ~150 lower

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- ► Measuring time 749 days (~2 years)
- ▶ Number of target protons 3.5×10³¹
- Estimated that geo- ν 's arrived in the distance of 200 km

► In Japan, large reactor neutrino background 🖙

Reactor- ν vs geo- ν events – worldwide

5.3 LENA at Pyhäsalmi

Reactor neutrino events per kiloton

5.3 LENA at Pyhäsalmi

LENA - liquid scintillation detector - 50 kton, depth 1.4 km

LENA

Low-Energy Neutrino Astrophysics

> organic liquid: in total 70kt

diameter governed by scintillator transparency

PM config optimization PMm²

Pyhäsalmi design

5.3 LENA at Pyhäsalmi

For geo- ν detection

- Three advantages over KamLAND
 - ▶ nuclear reactor background lower (factor of ~10)
 - larger detector volume (number of target protons 2.5×10³³)
 - ▶ better purification to clean ²¹⁰Pb (obtained in Borexino)
 ⇒ nearly negligible contribution
- Geo- ν events in Pyhäsalmi \sim 1300 per year
 - nuclear reactor ν events \sim 300
 - ²¹⁰Pb events ~10
- Accurate determination of nuclear reactor background under investigation, including the newest and closest reactors
- 2 TW hypothetical georeactor at the core of the Earth could be identified after one year measurement

5.4 Atmospheric neutrinos

General

- Atmospheric neutrinos are produced in the decays of pions, kaons and muons
 - π , K and μ created by cosmic-ray secondary particles
 - $\begin{array}{ll} & \pi^+ \longrightarrow \mu^+ + \nu_{\mu}, & \pi^- \longrightarrow \mu^- + \bar{\nu}_{\mu} \\ & \mu^+ \longrightarrow e^+ + \nu_e + \bar{\nu}_{\mu}, & \mu^- \longrightarrow e^- + \bar{\nu}_e + \nu_{\mu} \\ & K^+ \longrightarrow \mu^+ + \nu_{\mu}, & K^- \longrightarrow \mu^- + \bar{\nu}_{\mu} \\ & K_L \longrightarrow \pi^\pm + e^\pm + \nu_{\mu} (\bar{\nu}_{\mu}) \end{array}$
- Energy classification
 - below the knee energies \implies high energies
 - above the knee \implies ultra-high energies (\bowtie 5.6)
- ► Energy of high-energy atmospheric neutrinos is at the GeV range
 - the spectrum of secondary particles peaks at about 1 GeV, tail goes to higher energies
 - at above few GeV the contribution of muons is getting smaller and contribution of kaons is becoming more important
 - flux of cosmic rays is known pretty well, solar effects

5.4 Atmospheric neutrinos

General - high energies

- Atmospheric neutrinos are used for studying neutrino oscillation
 - oscillation phenomenom is a function of L/E
- \blacktriangleright Atmospheric neutrinos provide a long range for the baseline: $L \sim 10^0 \ \rm km 10^4 \ \rm km$
 - up- and down-going neutrinos (muons)
- ► First hints for neutrino oscillation at the end of 1980's from Kamiokande, IMB and others
 - were too small for definitive conclusions
- Super-K made the definitive measurement (1489 days):

$$rac{(N_{\mu}/N_e)_{
m data}}{(N_{\mu}/N_e)_{
m MC}} = 0.688 \pm 0.016 \pm 0.050$$

- sub-GeV region
- relative quantities are used as absolute fluxes involve large uncertainties

Long-baseline experiments: KEK to Kamioka, K2K

- First accelerator-based long-baseline neutrino experiment
- Neutrinos are produced by 12 GeV protons hitting on Al target of 65 cm long and 2 cm diameter
 - average energy of ν_μ is 1.4 GeV
 - \blacktriangleright contamination of muon decay and kaons ${\sim}1~\%$
- Baseline 250 km
 - near detector 300 m away from the production target (1 kt WC)
- ▶ First year of data taking: 2.3×10²⁹ pot (protons on target)
- Super-K observed 56 µµ-events, but expected 80±6 (from the near detectors hits)
 - this is clear deficit
 - in good agreement with results obtained from atmospheric data
 - if the deficit stays with more statistics, it would be significant result

- KEK upgrade to 50 GeV protons
 - allows to search for u_{τ} appearence

Long-baseline experiments: Fermilab to Soudan, MINOS

- Fermilab to Soudan baseline 730 km
- Average neutrino energy is 3 GeV
- MINOS experiment at Soudan mine (far detector)
 - calorimeter of 486 magnitized iron plates of 2.54 cm thick
 - interrupted by 4.1 cm thick plastic scintillation detectors
 - average toroidal magnetic field of 1.3 T
 - total mass 5.4 kt
- Near detector: 980 tons 900 metres away from the production target

- Data taking started 2005
 - aim: pure ν_{μ} -disappearance search
 - An exposure of 10 kt imes year (\sim two years) needed

Long-baseline experiments: CERN to Gran Sasso, CNGS

- CERN to Gran Sasso baseline 732 km
- Idea is to search directly for ν_{τ} -appearance
- Two detectors at Gran Sasso
 - ► ICARUS: liquid argon TPC detector of ~3 ktons
 - ▶ OPERA: lead-emulsion detector of ~2 ktons
- ► In five years of data taking 2.25×10²⁰ pot and a total of 18 events expected (OPERA)
 - \blacktriangleright used event-by-event analysis \longrightarrow considered background free

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Running a couple of years

Long-baseline experiments: CERN to LAGUNA baselines

General

- \blacktriangleright Idea: existence and observation of cosmic rays at high energies (up to ${\sim}6{\times}10^{19}$ eV)
 - \Longrightarrow possibilities to observe neutrinos at up to the same energy
- Originate from decay of secondaries like pion and kaon
- Like photon, neutrino is not affected by a magnetic field
- Are not absorbed by the interstellar medium or radiation
 - above 1 TeV the view of the universe in photons is limited: TeV photons are damped due to reactions with the IR background and PeV photons by the CMB
 - \implies search for hidden sources
- Neutrinos are thus excellent candidates for finding point sources
 - might help to identify the sources of cosmic rays
- Upward-going muons
- NESTOR and ANTARES, and AMANDA and ICECUBE, and KM3NeT

Science case

- Astroparticle physics with neutrinos
 - HE neutrinos « astronomy »
 - Diffuse flux and link with CR
- Dark matter and exotic particles
 - Dark matter (WIMP) annihilation in the center of the Sun or in the GC
 - Magnetic monopoles...
- Neutrino and particle physics (~ $10^5 v_{atm}$ /year)
 - UHE cross section
 - Neutrinos oscillation
 - Lorentz invariance test...
- Earth and marine sciences
 - Long-term, continuous measurements in deep-sea
 - Marine biology, oceanography, geology/geophysics, ...

Experiments – NESTOR and ANTARES – at Mediterranean Sea

- NESTOR Neutrino Extended Submarine Telescope with Oceanographic Research
 - ► at Mediterranean Sea, 14 km off the shore in Pylos, Greece, at the depth of 3800 m
 - water Cherenkov detector with 169 PMT's INF
 - aim seven towers, installation started in March 2003
- ANTARES Astronomy with a Neutrino Telescope and Abyyss environmental RESearch
 - was completed in May 2008
 - at Mediterranean Sea, 40 km off the shore near Toulon, France, at the depth of 2400 m
 - ► water Cherenkov detector, design: ~900 PMT's in 10 lines, lines separated by 60 m ^{III}

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

energy threshold of 10 GeV

Experiments – NESTOR – at Mediterranean

Experiments – ANTARES – at Mediterranean

Experiments – ANTARES – at Mediterranean

Experiments – AMANDA and ICECUBE – South Pole

- Ice Cherenkov detectors in the Antarctica
- AMANDA Antarctic Muon And Neutrino Detector Array
 - AMANDA-A exploratory phase, at a depth of 800–1000 m
 - AMANDA B-10 installed between 1995 and 1997 at a depth of 1500–2000 m, consists of 302 PMT's, outer diameter 120 m

- AMANDA-II completed January 2000, 677 PMT's
- AMANDA-II four years of data 🖙
- ICECUBE
 - with the surface detector ICETOP
 - ▶ goal 1 km³ detector, under construction

Experiments - AMANDA

Experiments - AMANDA - results from 1387 days and 6595 events

Candidate	$\delta(^{\circ})$	$\alpha(h)$	Φ_{90}	p	$\Psi(^{\circ})$	Ν
3C 273	2.05	12.49	8.71	0.086	2.1	3
SS 433	4.98	19.19	3.21	0.64	2.2	1
GRS 1915+105	10.95	19.25	7.76	0.11	2.3	8
M87	12.39	12.51	4.49	0.43	2.3	3
PKS 0528+134	13.53	5.52	3.26	0.64	2.3	0
3C 454.3	16.15	22.90	2.58	0.73	2.3	5
Geminga	17.77	6.57	12.77	0.0086	2.3	2
Crab Nebula	22.01	5.58	9.27	0.10	2.3	7
GRO J0422+32	32.91	4.36	2.75	0.76	2.2	3
Cyg X-1	35.20	19.97	4.00	0.57	2.1	3
MGRO J2019+37	36.83	20.32	9.67	0.077	2.1	7
4C 38.41	38.14	16.59	2.20	0.85	2.1	4
Mrk 421	38.21	11.07	2.54	0.82	2.1	3
Mrk 501	39.76	16.90	7.28	0.22	2.0	6
Cyg A	40.73	19.99	9.24	0.095	2.0	3
Cyg X-3	40.96	20.54	6.59	0.29	2.0	8
Cyg OB2	41.32	20.55	6.39	0.30	2.0	8
NGC 1275	41.51	3.33	4.50	0.47	2.0	4
BL Lac	42.28	22.05	5.13	0.38	2.0	2
H 1426+428	42.68	14.48	5.68	0.36	2.0	3
3C66A	43.04	2.38	8.06	0.18	2.0	6
XTE J1118+480	48.04	11.30	5.17	0.50	1.8	3
1ES 2344+514	51.71	23.78	5.74	0.44	1.7	2
Cas A	58.82	23.39	3.83	0.67	1.6	2
LS I +61 303	61.23	2.68	14.74	0.034	1.5	5
1ES 1959+650	65.15	20.00	6.76	0.44	1.5	5

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Experiments – ICECUBE – South Pole

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

Experiments – ICECUBE – South Pole

Experiments – ICECUBE – South Pole

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Future experiments - KM3NeT - Mediterranean Sea

- Cubic kilometre size (KM3) Neutrino Telescope
- Neutrino telescope at the Mediterranean Sea
 - volume at least one cubic kilometre
- ► Experience from ANTARES, NESTOR and NEMO experiments
- In preparatory phase, design study completed soon
- Construction should start around March 2011
- Data taking should start around September 2011 (with partial setup)

Future experiments – KM3NeT – Mediterranean Sea

- Locations of the three pilot projects:
 - ANTARES: Toulon
 - NEMO: Capo Passero
 - NESTOR: Pylos
- All appear to be suitable
- Long-term site characterisation measurements performed and ongoing
- Decisions: KM3NeT-PP

Complementarity of the experiments

E>10 TeV: ~0.1 deg

Angular resolution E>10 TeV: ~0.7 deg