Timo Enqvist University of Oulu Oulu Southern institute

lecture cource on

Astroparticle physics

15.09.2009 - 15.12.2009

4 Supernovae and supernova neutrinos

- 4.1 Supernova process
- 4.2 Supernova neutrinos
- 4.3 Supernova neutrino detection
- 4.4 Supernova neutrinos what can be learned?
- 4.5 Supernova SN1987A
- 4.6 Supernova diffuse (relic) neutrinos
- ▶ 4.7 Supernova neutrinos a dedicated detector network

Supernova types – classification

Supernovae arises from two different final stages of stars

- ► Thermonuclear explosion of a white dwarf in a binary system
 - critical limit called the Chandrasekhar mass ($\sim 1.4 \cdot M_{sun}$)
 - "standard candle"
- \blacktriangleright Explosion caused by the core collapse of a massive star (${\sim}8{\cdot}M_{sun})$
 - no more fuel to produce energy in the core of a star

Supernovae are classified spectroscopically by the appearance of hydrogen in their spectrum

- Type I no sign of hydrogen in the spectrum
 - subdivided into type Ia (white dwarf, no neutrinos produces), Ib and Ic (core collapse SN)
- Type II contain hydrogen in the spectrum

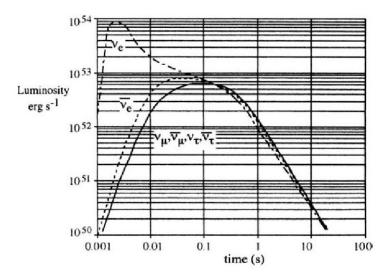
The whole supernova process is more complex than suggested by the simple classification scheme

Core collapse – type II supernova – 1

- ► A heavy star (~8·M_{sun}) evolves through all the stages of stellar fusion
 - \blacktriangleright ending up with an iron core by silicon burning at ${\it T} \sim 4 \times 10^9 \ {\rm K}$
- Eventually, the core mass exceeds the Chandrasekhar limit
 - the core becomes unstable
- The core is driven into collapse by two triggering processes
 - the photo-disintegration of iron nuclei by thermal photons $(E_{\gamma} \approx 2.5 \text{ MeV})$ speeds up the collapse by absorbing energy
 - the conversion of protons to neutrons by electrons via inverse beta decay: e⁻ + p → n + ν_e
 ^{IST} neutronisation
 - at higher temperature: $e^- + {}^{56}Fe \longrightarrow {}^{56}Mn + \nu_e$
- At high densities, the form of pressure opposing the core collapse is called electron degeneracy pressure

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

relativistic electrons

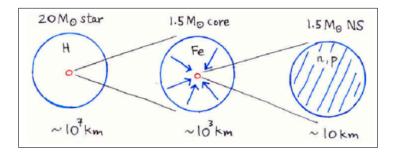

Core collapse - type II supernova - 2

- As more and more electrons are converted to neutrinos, the deneneracy pressure of electrons will steadily decrease and finally the collapse take place
- The collapse is halted in a fraction of second as the core reaches the nuclear density
 - further compression is resisted by nuclear force
- ► As soon as the core density exceeds the nuclear density by a factor of 2–3, the core material will "bounce"
 - outgoing supersonic shock wave
- ► At the initial core collapse the neutronisation produces an emission of neutrinos (v_e)
 - ► the outgoing shock wave is accompanied by neutrino burst of $10^{56}-10^{57} \nu_e$'s during a few milliseconds

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- neutrinos become trapped at nuclear densities
- In the cooling phase all neutrino flavours are emitted by approximately the same amount

Core collapse - type II supernova - neutrino luminosity


Core collapse - type II supernova - role of neutrinos

- It has been discussed that the shock wave would not be strong enough to "explode" the supernova
 - the shock front would attenuate when passing the different layers of the star

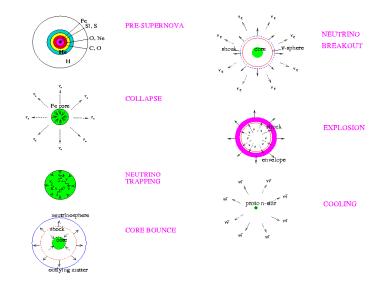
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

It has been proposed that the neutrino pulse could "restart" the shock wave

Core collapse – Energy release – 1

The total gravitational energy released in the collapse to a neutron star

$$E_{
m grav} pprox rac{3}{5} rac{GM_{
m NS}^2}{R_{
m NS}} pprox 3 imes 10^{59} \ {
m MeV} pprox 3 imes 10^{46} \ {
m J}$$


▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

4 Supernovae and supernova neutrinos - 4.7 -

Core collapse - Energy release - 2

- \blacktriangleright Total energy release $E_{\rm grav}\approx 3\times 10^{59}~{\rm MeV}\approx 3\times 10^{46}~{\rm J}$
- \blacktriangleright Kinetic energy of explosion $$\approx 10^{-2}$\cdot E_{grav}$$
- \blacktriangleright EM radiation (incl. optically visible part) $~\approx 10^{-4} \cdot \Delta E_B$
- \blacktriangleright Rest, ${\sim}99\%$, of the energy is taken away by neutrinos
 - \blacktriangleright $\sim\!\!1\%$ of $\nu_{\rm e}$ from an initial breakout burst
 - ▶ ~99% are $\nu \bar{\nu}$ pairs of all flavors from the cooling phase
- \blacktriangleright Number of emitted neutrinos: ${\sim}10^{58}$ of all types
- ► Number of expected supernova explosions in our Galaxy: ~(3±1) per century
 - \blacktriangleright the two last (observed) supernovae: 1604 and ${\sim}1680$

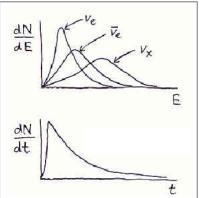
Core collapse - schematic picture

4.2 Supernova neutrinos

Neutrino emission

The Energy of emitted neutrinos can be described by Boltzmann distribution

Different flavours are created at different temperatures


- $\langle \mathsf{E}_{\nu_e}
 angle pprox 11~\mathrm{MeV}$
- $\blacktriangleright~\langle {\sf E}_{\bar{\nu}_e} \rangle \approx 16~{\rm MeV}$
- $\langle \mathsf{E}_{\nu_{\mu\tau}}
 angle pprox 25$ MeV

Neutrinopulse is quite short

 \blacktriangleright duration \sim 10 – 20 s

Luminosities

• $L_{\nu_e}(t) \approx L_{\bar{\nu}_e}(t) \approx L_{\nu_{\mu\tau}}(t)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

General

- Several kinds of detectors are capable of detecting supernova neutrino burst
- Detectors dedicated to the supernova neutrino detection don't still exist, even thought some of them are proposed.
- Thus, the detectors have primary purpose other than supernova neutrino detection, for example, proton decay or solar neutrino studies
- Detector types for supernova neutrino detection
 - Scintillation Detectors (Borexino, KamLAND, SNO+, LENA)
 - Water Cherenkov Detectors (SK, UNO, Hyper-K, MEMPHYS)
 - Heavy Water Cherenkov Detectors
 - Long String Water Cherenkov Detectors (AMANDA)
 - High-Z Detectors (ONMIS, LAND)
 - Liquid Argon (ICARUS, LANNDD, GLACIER)

Scintillation detectors

- Usually liquid scintillators
 - material C_xH_y
 - surrounded by large amounts of PMTs
- Reactions
 - ν -e scattering: $\nu_x + e^- \rightarrow \nu_x + e^-$
 - inverse β -decay: $\bar{\nu}_{e} + p \rightarrow e^{+} + n$
 - CC-capture of $\bar{\nu}_{e}$: $\bar{\nu}_{e} + {}^{12}C \rightarrow {}^{12}B + e^{+}$
 - CC-capture of ν_{e} : $\nu_{e} + {}^{12}C \rightarrow {}^{12}N + e^{-}$
 - ► NC-excitation of ¹²C: $\nu_x + {}^{12}C \rightarrow {}^{12}C^* + \nu'_x$
- Detectors
 - KamLAND in Kamioka
 - BOREXINO in Gran Sasso
 - SNO+, LENA
- Very little pointing and weak flavor capability

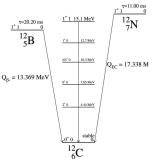
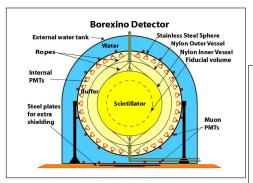



Fig. 1. Level diagram for the 12C, 12N, 12B triad.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Scintillation detectors: Borexino - 300 tons of pseudocumene (PC, C9H12)

a		

Supernova neutrino events in Borexino from a supernova at 10 kpc, with $\epsilon_B = 3 \times 10^{53}$ ergs binding energy release

Reaction channel	$\langle E_v \rangle$ (MeV)	$\langle \sigma \rangle ~(\mathrm{cm}^2)$	Nevents	
v _e –e	11	$1.02 imes 10^{-43}$	2.37	
v _e –e	16	$6.03 imes10^{-44}$	0.97	
v _x -e	25	$3.96 imes 10^{-44}$	0.81	
v _x -e	25	$3.25 imes 10^{-44}$	0.67	
Total v–e			4.82	
$\bar{\nu}_e + p \rightarrow e^+ + n$	16	2.70×10^{-41}	79	
${}^{12}C(v_e, e^-){}^{12}N$	11	$1.85 imes 10^{-43}$	0.65	
$^{12}C(\bar{\nu}_{e},e^{+})^{12}B$	16	$1.87 imes10^{-42}$	3.8	
Neutral-current exci	tation			
$v_{e} + {}^{12}C$	11	1.33×10^{-43}	0.4	
$\bar{v}_{e} + {}^{12}C$	16	$6.88 imes 10^{-43}$	1.5	
$v_{x} + {}^{12}C$	25	$3.73 imes 10^{-42}$	20.6	
Total ${}^{12}C(v, v'){}^{12}C^*$			22.5	

Scintillation detectors: LENA – 50 ktons of PXE (C₉H₁₀)

- Assuming a star of 8×M_{sun} (3×10⁵³ erg) at D = 10 kpc (standard supernova)
- In LENA detector ~15000 events

►
$$\bar{\nu}_e + p \rightarrow n + e^+$$
; $n + p \rightarrow d + \gamma$ ~7500 - 13800

►
$$\bar{\nu}_e + {}^{12}\text{C} \rightarrow {}^{12}\text{B} + e^+; {}^{12}\text{B} \rightarrow {}^{12}\text{C} + e^- + \bar{\nu}_e \sim 150 - 610$$

►
$$\nu_e + {}^{12}\text{C} \rightarrow {}^{12}\text{N} + e^-; {}^{12}\text{N} \rightarrow {}^{12}\text{C} + e^+ + \nu_e \sim 200 - 690$$

►
$$\nu_x + {}^{12}C \rightarrow {}^{12}C^* + \nu_x; {}^{12}C^* \rightarrow {}^{12}C + \gamma$$
 ~680 - 2070

►
$$\nu_x + e^- \rightarrow \nu_x + e^-$$
 (elastic scattering) ~~680

► ν_x + p \rightarrow ν_x + p (elastic scattering) \sim 1500 - 5700

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Accurate and detailed analysis possible

Water Cherenkov detectors: General - heavy and normal water

- ▶ Volume of clear water (H₂O) or heavy water (D₂O), vieved by PMTs
- Reactions in H₂O
 - ► inverse β-decay:
 - CC-capture of v
 _e:
 - CC-capture of v_e:
 - NC-excitation of ¹⁶O: $\nu_x + {}^{16}O \rightarrow {}^{16}O^* + \nu'_x$
- Reactions in D₂O
 - CC-breakup :
 - NC-breakup :
 - Elastic scattering (ES): $\nu_x + e^- \rightarrow \nu_x + e^-$

- No heavy water detectors running (or proposed)
- Super-K in Kamioka, Japan
- Proposed: UNO, Hyper-K, MEMPHYS
- ▶ H₂O : Some pointing and flavor capability
 - D_2O : Very good flavor sensitivity, some pointing

$$\overline{\nu}_{e} + p \rightarrow e^{+} + n$$

$$\overline{\nu}_{e} + {}^{16}O \rightarrow {}^{16}N + e^{+}$$

$$\nu_{e} + {}^{16,18}O \rightarrow {}^{16,18}F + e^{-}$$

$$\nu_{e} + {}^{16}O \rightarrow {}^{16}O^{*} + \nu_{e}'$$

$$\nu_{e} + d \rightarrow p + p + e^{-}$$

 $\nu_{x} + d \rightarrow p + n + \nu_{x}$

High-Z detectors: General

- ► Large quantity of Pb, Pb(ClO₄)₂, or Fe (few to tens of kT)
- Pb, Fe
 Pb(ClO₄)₂
 Cherenkov
- Advantages
 - Pb (and Fe) has relatively high cross section, and it is low-cost material

- Pb has small neutron capture cross section
- Reactions

• NC :
$$\nu_x$$
 + ²⁰⁸Pb \rightarrow ²⁰⁸Pb^{*} + ν'_x \rightarrow ^{208-x}Pb + xn

- CC : ν_{e} + ²⁰⁸Pb \rightarrow ²⁰⁸Bi* + e⁻ \rightarrow ^{208-x}Bi + xn
- Detectors
 - proposed: OMNIS, LAND
 - (these would be dedicated SN neutrino detectors)
- Good flavor capability, no pointing

High-Z detectors: OMNIS

- Observatory for Multiflavor Neutrino Interactions from Supernova
- Pb as metal or as perchlorate (with or without Fe)
- Modular structure

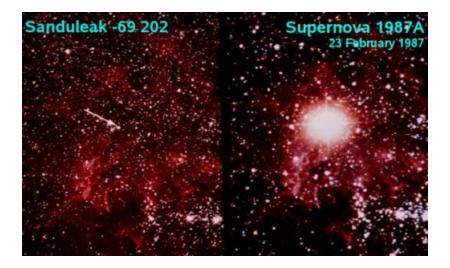
Single- and double-neutron events, per kr of material, no oscillation								
Material, event type	$\text{CC-}\nu_{\text{e}}$	$CC\text{-}\bar\nu_{e}$	$NC\text{-}\nu_{e}$	$NC\text{-}\bar{\nu}_{e}$	$NC-\nu_x$	Total		
Pb, single-n	59	0	8	37	677	781		
Pb, double-n	26	0	0	1	20	47		
Fe, single-n	4	5	2	6	146	163		

Single- and double-neutron events, per kT of material, no oscillation

Number of events versus supernova distance (16 0.5-kT Pb modules)

Distance	0.50 kpc	1.0 kpc	2.0 kpc	4.0 kpc	8.0 kpc	16 kpc
Counts	$0.5{ imes}10^6$	112000	27500	6860	1740	440

Summary of SN ν detectors


Detector	Туре	Mass [kT]	Location	Events at 8 kpc	Status	Flavo
Super-K	Water- Čerenkov	32	Japan	7000	Running again for SN by Nov 02	$\bar{\nu}_{\rm e}$
SNO	Light water Heavy water	1.0 1.4	Canada	450 350	running	$\bar{\nu}_{e}$ all
LVD	Scintillator	1	Italy	200	running	ν _e
KamLAND	Scintillator	1	Japan	300	running	$\bar{\nu}_{e}$
BOREXINO	Scintillator	0.3	Italy	100	ready 2003	$\bar{\nu}_{e}$
Baksan	Scintillator	0.33	Russia	50	running	ν _e
Mini-BooNe	Scintillator	0.7	USA	200	running	$\bar{\nu}_{e}$
AMANDA	Long String (water)	0.4/PMT	South Pole	N/A	running	$\bar{\nu}_{e}$
ICARUS	Liquid Argon	2.4	Italy	200	running (?)	$\nu_{\rm e}$
OMNISS	РЬ	2 - 3	USA (?)	>1000	proposed	all
LANNDD	Liquid Argon	70	USA (?)	6000	proposed	ν_{e}
UNO	Water- Čerenkov	600	USA(?)	>10 ⁵	proposed	$\bar{\nu}_{\rm e}$
Hyper-K	Water- Čerenkov	1000	Japan	>10 ⁵	proposed 2009	$\bar{\nu}_{\rm e}$

4.4 Supernova neutrinos

What can be learned?

- Neutrino Physics
 - neutrino absolute mass (with some accuracy)
 - neutrino oscillations
- Supernova Core Collapse Physics
 - explosion mechanism, supernova evolution in time
 - convection, hydrodynamics instabilities
 - proto neutron-star EoS
 - black hole formation mechanism
 - neutrino roles in r-process (in production of heavy elements)

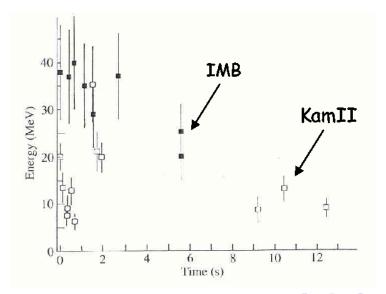
- Signatures (by measuring flavour, energy and time structure of the neutrino burst)
 - pulse risetime and shape
 - ▶ breakout, luminosity cutoff (☞ black hole formation)
 - pulsation
 - cooling

General properties

- Astronomical Event of the Decade
- The Sanduleak star situated 167000 light years away, in the Large Magellanic Cloud (5 times further than the average distance expected for a Galactic supernova)
- Only stellar collapse, so far, from which neutrinos have been detected
- 20 neutrinos were detected by Kamiokande and IMB experiments (both used water Cherenkov detectors)
- In addition, some events were also registered by Baksan and Mont Blanc detectors (both were liquid scintillator), but these events are not accepted as SN1987A events

Kamiokande and IMB: The detectors

- See lecture notes 1.10 and 2.20 for more details
- Both detectors were designed to search for proton decay
- Water Cherenkov detectors, surrounded by PMTs
- Kamiokande II at 2700 mwe, IMB at 1570 mwe
- IMB had about 10 times larger mass
 - it was less sensitivity to low-energy events because of higher background rates


- it also had lower efficiency in the collection of Cherenkov light
- Energy threshold in the IMB was about 20 MeV, and in Kamiokande II about 6 MeV

Kamiokande and IMB: Measured neutrino signals

Event	Time	Energy	Angle	Event	Time	Energy	Angle
no.	Feb. 23	[MeV]	[deg.]	no.	Feb. 23	[MeV]	[deg.]
K-1	35.00	20.0±2.9	18±18	IMB-1	41.37	38±7	80±10
K-2	35.11	$13.5{\pm}3.2$	40±27	IMB-2	41.79	37±7	44±15
K-3	35.20	$7.5{\pm}2.0$	108±32	IMB-3	42.02	28±6	56±20
K-4	35.32	9.2±2.7	70±30	IMB-4	42.52	39±7	65±20
K-5	35.51	$12.8{\pm}2.9$	$135{\pm}23$	IMB-5	42.92	36±9	$33{\pm}15$
K-6	35.69	6.3±1.7	68±77	IMB-6	44.06	36±6	$51{\pm}10$
K-7	36.54	$35.4{\pm}8.0$	$32{\pm}16$	IMB-7	46.38	$19{\pm}5$	42±20
K-8	36.73	$21.0{\pm}4.2$	$30{\pm}18$	IMB-8	46.96	22±5	$104{\pm}20$
K-9	36.92	$19.8{\pm}3.2$	38±22				
K-10	44.22	8.6±2.7	$122{\pm}30$				
K-11	45.43	$13.0{\pm}2.6$	49±26				
K-12	47.44	$8.9{\pm}1.9$	91±39				

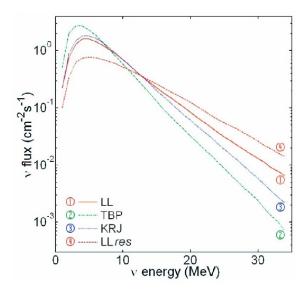
Time is 07:35:xx.xx

Kamiokande and IMB: Measured energy spectrum

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三重 - 釣A(?)

What were learned?

- About 600 scientific articles published (of all topics) by 2005
- Pre-existing calculations were in quite good agreement with the observed neutrino burst
- \blacktriangleright Quite low statistics, and only $\bar{\nu}_{e}$ were detected
 - important aspects of the theory could not be tested, for example, most of the energy is believed to be emitted in higher-temperature muon and tau neutrinos (and anti-neutrinos)
- New limits were obtained, for example, on the mass, charge, magnetic moment, decay rate, limiting velocity


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• $m(ar{
u}_e) \leq 15 \sim 30 \; eV$

General

- The cosmic neutrino background
 - generated by core-collapse supernova explosions throughout the universe
 - know as supernova relic neutrinos or diffuse supernova neutrinos
- Diffuse supernova neutrinos are believed to provide a new source of information on
 - the core-collapse supernova explosion mechanism
 - the supernova rate
 - the star formation rate
- ► The detection of diffuse supernova neutrinos is demading
 - low integral flux $\sim 10^2 \ \nu \ \mathrm{cm}^{-2} \cdot \mathrm{s}^{-1}$ (all flavours)
 - ▶ most probable detection channel: $\bar{\nu}_e + p \longrightarrow e^+ + n$ due to highest cross section ($\sigma = 6.8 \times 10^{-6}$ pb at 10 MeV)
- Background from nuclear reactor neutrinos (low-energy part) and from atmospheric neutrinos (high-energy part)

Neutrino energy spectrum

<ロト <回ト < 注ト < 注ト

æ.

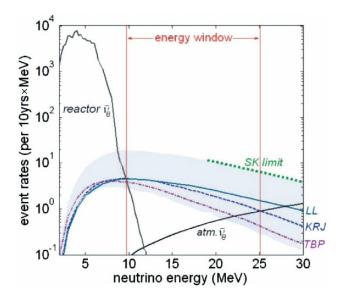
Experiments

 The best experimental limit on the diffuse supernova neutrino flux has been achieved by the Super-Kamiokande experiment (water Cherenkov)

$$\Phi(ar{
u}_e) < 1.2 \ {
m cm}^{-2} \cdot \ {
m s}^{-1}, \qquad E(ar{
u}_e) > 19.3 \ {
m MeV}$$

- Liquid scintillation detector provides better background rejection and allows lower energy threshold than water Cherenkov
 - KamLAND, BOREXINO and SNO+ are not massive to reach significant statistics

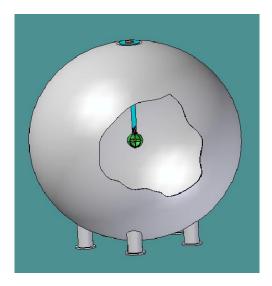
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●


 A large-volume (liquid scintillation) detector is required: LENA (50 kton)

Experiments – LENA at Pyhäsalmi

- ► LENA is planned 50 kton liquid scintillation detector ~1400 metres underground
- It can provide almost background-free energy window of 10–25 MeV for detecting diffuse supernova neutrinos
- ► LENA can detect ~10 diffuse supernova neutrino events per year in Pyhäsalmi
- Within ten years of exposure
 - significant constraits on core-collapse supernova models
 - significant constraits on supernova rate in the near universe (up to the redshift z = 2)

- If no signal is detected (in ten years)
 - the new limits were significantly lower than all models predict
 - imptoving the limit given by the SK by a factor of 10


Event rate at Pyhäsalmi

Dedicated setup: TPC detector network

- Different approach to large-volume detectors
- A network of spherical TPC detectors for supernova neutrino observation
 - ▶ several "small" detectors in (European) underground laboratories
- arXiv:hep-ex/0503029: A network of neutral current spherical TPC's for dedicated supernova detector
- ► High-pressure (10 bar Xe, 30–60 bar Ar) diameter 4–6 metres, Micromegas for readout
- Neutrino coherent scattering
 - ▶ large cross section: $\sigma(E_{\nu}) \approx 10^{-38}$ cm² at $E_{\nu} = 20$ MeV for xenon
 - \blacktriangleright challence to measure low-energy recoil (for Xe ${\sim}7$ keV, in average)
- \blacktriangleright Number of events: N $_{\nu_e} \sim$ 10, N $_{\bar{\nu}_e} \sim$ 15, N $_{\nu_x} \sim$ 70 (total \sim 95)

Dedicated setup: TPC detector

うせん 同一人用 (一日) (日)