Timo Enqvist University of Oulu Oulu Southern institute

lecture cource on

Astroparticle physics

15.09.2009 - 15.12.2009

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Basics: Binding energy

The mass of an atom – or nucleus – $({}^{A}X)$ is not a sum of its parts (Z protons and electrons, and N neutrons) but the binding energy is needed to be taken into account

$$m(^{A}X)c^{2} = Z \cdot (m_{p} + m_{e})c^{2} + N \cdot m_{n}c^{2} - B$$

The masses are here expressed as atomic mass units $u,\,1~u=931.502$ ${\rm MeV}/c^2$ The binding energy can be obtained as

$$B = (Z \cdot m(^{1}H) + N \cdot m_{n} - m(^{A}X))c^{2}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Basics: Binding energy systematics

Basics: Coulomb barrier

An important factor when dealing with fusion reactions is the height of the Coulomb barrier

The heigth of their Coulomb barrier, when a and X are the reacting particles, is

$$V_C = \frac{e^2}{4\pi\epsilon_0} \cdot \frac{Z_a \cdot Z_X}{R_a + R_X}, \qquad \qquad \frac{e^2}{4\pi\epsilon_0} = 1.44 \text{ MeV} \cdot \text{fm}$$

when the particles just touch at their surfaces. Z_a and Z_X are the charges (proton numbers) and R_a and R_X are the radii of the particles

$$R = r_0 \cdot A^{1/3}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

with $r_0 \approx 1.2$ fm and A is the mass number.

Basics: Coulomb barrier

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Basics: Coulomb barrier

Example:

$$^{1}\mathrm{H}+^{1}\mathrm{H}\longrightarrow{}^{2}\mathrm{H}+\mathrm{e}^{+}+\nu$$

Now $Z_a = Z_X = Z_p = 1$, $R_a = R_X = R_p \approx 1.2$ fm, and

$$V_{\mathcal{C}} = \frac{e^2}{4\pi\epsilon_0} \cdot \frac{Z_a \cdot Z_X}{R_a + R_X} = 1.44 \ \frac{Z_p^2}{2R_p} \ \text{MeV} \cdot \text{fm} = 0.6 \ \text{MeV}$$

With strong force included, the effective barrier, for the present reaction, is

$$V_C = 0.550 \text{ MeV}$$

In classic terms, this p + p -reaction occur only when the energy of the protons exceeds 0.550 MeV (*)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Basics: Nuclear reaction Q-value

The nuclear reaction (and decay) can be characterised by its Q-value

$$Q = (M_{
m initial} - M_{
m final})c^2 = (m_a + m_X - m_b - m_Y)c^2$$

- Q > 0 : exothermic nuclear mass or binding energy is released as kinetic energy of the final products
- Q < 0 : endothermic the initial kinetic energy is converted into nuclear mass or binding energy

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example:
$${}^{1}H + {}^{1}H \longrightarrow {}^{2}H + ... \quad (p + p \longrightarrow d)$$

 $m({}^{1}H) = 1.007825u$
 $m({}^{2}H) = 2.014102u$
 $Q = (m_p + m_p - m_d)c^2 = 1.44 \text{ MeV}$
This energy goes to the kinetic energy of positron and neutrino.

Main processes

Temperature	Process	Reaction	Mass of a
[10 ⁶ K]	– burning	product	star [M _{SUN}]
10–20	hydrogen	helium	~ 1
	pp-chain		
	CNO cycle	helium	~ 1.5
100-200	helium	carbon, oxygen	
	$triple-\alpha$		
500	carbon	Ne, Na, Mg (16 \leq A \leq 28)	~3
1000	oxygen	Si, S, P (16 \leq A \leq 28)	
2000-4000	silixon	Fe, Ni (28≤A≤56)	$\sim \! 15$
	s-, r-, and p-	A≥60	
	processes		

Reaction rates - 1

Stellar reaction rate $\langle \sigma v \rangle$ can be written using Maxwell-Boltzmann energy distribution (in the centre-of-mass system, for a reaction pair)

$$\langle \sigma v \rangle = \left(\frac{8}{\pi\mu}\right)^{1/2} \cdot \frac{1}{kT^{3/2}} \cdot S(E_0) \int_0^\infty \exp\left(-\frac{E}{kT} - \frac{b}{E^{1/2}}\right) dE$$

where $k=8.6171\times 10^{-5}~{\rm eV}\cdot{\rm K}^{-1}$ is the Boltzmann constant, T the temperature, and μ the reduced mass.

► S-factor contains information about the cross section. It is nearly constant at solar energies; S(E) ~ 100 - 1000 MeV·b

(日)((1))

Term b/E^{1/2} describes the penetration through the Coulomb barrier;
 b = (2μ/ħ²)^{1/2}πe² · Z₁ · Z₂ = 0.989 · Z₁ · Z₂ · μ^{1/2} (MeV)^{1/2}
 b² is also called Gamow energy (E_G)

Reaction rates – 2

 The effective mean energy for thermonuclear fusion reaction (at given temperature T) can be obtained as

$$E_0 = \left(\frac{bkT}{2}\right)^{2/3}$$

For ${}^{1}\text{H} + {}^{1}\text{H}$ (at $T \sim 15 \times 10^{6}$ K) : $E_{0} = 6$ keV (**)

- Comparing (*) and (**): $V_C = 550 \text{ keV vs. } E_0 = 6 \text{ keV} \implies$ the fusion of ¹H + ¹H occurs via tunneling through the Coulomb barrier
 - \Longrightarrow the rate is very slow, for this reaction ${\sim}1$ per 10^9 years, which keep the sun shining billions of years
- About 600 million tons of hydrogen is burned into helium per second in the sun.

Energy production

The (main) energy production in stars is competition between two options

- Proton-proton chain
 - the most important mechanism below $\sim 1.5 \ M_{SUN} \ (T_6 < 20)$
 - includes three branches, but the first (ppl) dominating
 - net result: converts 4 protons into a helium
- CNO cycle
 - carbon-nitrogen-oxygen cycle
 - \blacktriangleright dominant process above ${\sim}1.5~M_{SUN},$ but in the sun produces ${\sim}2\%$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- large astronomical relevance
- net result: converts 4 protons into a helium
 - \longrightarrow carbon, nitrogen and oxygen serve as catalysts

Energy production: proton-proton chain: all

Energy production: CNO cycle – 1

- ► The CNO cycle consists of the following reactions: (1) ${}^{12}C + {}^{1}H \longrightarrow {}^{13}N + \gamma$ (2) ${}^{13}N \longrightarrow {}^{13}C + e^+ + \nu$ ($E_{\nu} \le 1.2 \text{ MeV}$) (3) ${}^{13}C + {}^{1}H \longrightarrow {}^{14}N + \gamma$ (4) ${}^{14}N + {}^{1}H \longrightarrow {}^{15}O + \gamma$ (5) ${}^{15}O \longrightarrow {}^{15}N + e^+ + \nu$ ($E_{\nu} \le 1.73 \text{ MeV}$) (6) ${}^{15}N + {}^{1}H \longrightarrow {}^{12}C + {}^{4}\text{He}$
- \blacktriangleright The CNO is the dominant process above ${\sim}1.5~M_{SUN}$
- In the sun it contributes ${\sim}2\%$
- Large astronomical relevance (age of globular clusters)
- ▶ The "bottle-neck" reaction ${}^{14}N + {}^{1}H \longrightarrow {}^{15}O + \gamma$ (4) is the slowest and determines the rate of the cycle
 - at $T_6 = 20$, about 1 reaction/million years
 - the newest LUNA results: rate slower than expected by solar models
 - ▶ solar CNO– ν prediction lowered by factor of 2

Energy production: CNO cycle – 2

Energy production: reaction rates of pp vs. CNO

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Helium burning: triple- α and α -reactions

- Amount of helium increaces due to pp-chain and CNO-cycle
- ► At approximately $T = 10^8$ K, triple- α reaction starts to burn helium into carbon
- The triple-α reactions are

 ⁴He + ⁴He ↔ ⁸Be
 ⁸Be + ⁴He → ¹²C + γ
 ⁸Be is highly unstable isotope (τ ≈ 30 fs) and decays back to two α-particles
 ⇒ resonance in ¹²C
- ► Helium may fuse also with carbon and heaver nuclei (i) ${}^{12}C + {}^{4}He \longrightarrow {}^{16}O + \gamma$ (ii) ${}^{16}O + {}^{4}He \longrightarrow {}^{20}Ne + \gamma$ (iii) ${}^{20}Ne + {}^{4}He \longrightarrow {}^{24}Mg + \gamma$
- These reactions, however, are not very important in the energy production

Carbon, oxygen and silicon burning

- ► After helium has been exhausted, carbon burning starts at temperature $T = 5 8 \times 10^8 \text{ K}$ $^{12}\text{C} + ^{12}\text{C} \longrightarrow ^{24}\text{Mg} + \gamma \longrightarrow ^{23}\text{Mg} + n$ $\longrightarrow ^{23}\text{Na} + ^{1}\text{H}$ $\longrightarrow ^{20}\text{Ne} + ^{4}\text{He}$ $\longrightarrow ^{16}\text{O} + 2 ^{4}\text{He}$
- ► Oxygen burning take place in a slightly higher temperature ${}^{16}O + {}^{16}O \longrightarrow {}^{32}S + \gamma \longrightarrow {}^{31}S + n$ $\longrightarrow {}^{31}P + n$ $\longrightarrow {}^{28}Si + {}^{4}He$ $\longrightarrow {}^{24}Mg + 2 {}^{4}He$
- ► The reactions stop in silicon burning ${}^{28}\text{Si} + {}^{28}\text{Si} \longrightarrow {}^{56}\text{Ni} + \gamma$ ${}^{56}\text{Ni} \longrightarrow {}^{56}\text{Fe} + 2e^+ + 2\nu_e$
- These and the following phenomena are the topic of the next lecture. Now we continue with neutrinos

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Reactions producing neutrino: pp and CNO

- ▶ pp: ${}^{1}\text{H} + {}^{1}\text{H} \longrightarrow {}^{2}\text{H} + e^{+} + \nu_{e}$
- ► ⁷Be: ⁷Be + $e^- \longrightarrow$ ⁷Li + ν_e
- $\blacktriangleright {}^{8}B: {}^{8}B \longrightarrow {}^{8}Be^{*} + e^{+} + \nu_{e}$
- ▶ pep: $p + e + p \longrightarrow {}^{2}H + \nu_{e}$
- hep: ${}^{3}\text{He} + p \longrightarrow {}^{4}\text{He} + e^{+} + \nu_{e}$
- CNO: ¹³N \longrightarrow ¹³C + e^+ + ν_e
- CNO: ¹⁵O \longrightarrow ¹⁵N + e^+ + ν_e

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Neutrino spectrum

SNO - the detector

- Deep underground (6800 ft, 2070 m, 5900 mwe) in the Creighton Mine (owned by INCO Ltd) near Sudbury, Canada (Ontario)
- Water Cherenkov detector, 1 kton of D₂O (12-m diameter acrylic vessel) and 5 kton of H₂O as shielding
- Over 9000 PMT's
- Energy threshold ~5 MeV
- ► Number of deuteron atoms ~6×10³¹
- Neutrino Sensitivity:
 ⁸Be and hep
- Operated (with heavy water): 1999–2002

SNO - detection of neutrinos - 1

- Heavy water (D₂O) allows several reactions to be used to detect neutrinos
 - ► (1) $\nu_e + d \longrightarrow e^- + p + p$, $E_{thr} = 1.442 \text{ MeV}$ (charged current, CC)

$$\blacktriangleright (2) \quad \nu + e^- \longrightarrow \nu + e^-$$

(elastic scattering, ES)

► (3) $\nu + d \longrightarrow \nu + p + n$, $E_{thr} = 2.225 \text{ MeV}$ (neutral current, NC)

 $n + d \longrightarrow {}^{3}He + \gamma$ (6.3 MeV)

SNO can measure all neutrino flavors (using (3))

 To enhance the detection efficiency of neutrons in reaction (3), Cl – in the form of 2 tons of NaCl – has been, for example, added to the heavy water

• n +
$${}^{35}CI \longrightarrow {}^{36}CI + \gamma(8.6 \text{ MeV})$$

SNO - detection of neutrinos - 2

(c)
$$\nu + e^- \longrightarrow \nu + e^-$$

(ES)
(b) $\nu_e + d \longrightarrow e^- + p + p$
(CC)
(a) $\nu + d \longrightarrow \nu + p + n$,
(NC)
 $n + d \longrightarrow {}^{3}\text{He} + \gamma(6.3 \text{ MeV})$

SNO - ⁸B neutrinos

- measurement time : 306 days (Nov. 1999 May 2001)
- Solar neutrino events (D₂O)
 - CC events : 1967.7 ^{+61.9}_{-60.9}
 - NC events : 576.5 +49.5 -48.9
 - ES events : 263.6 ^{+26.4}_{-25.6}
- Measured ⁸B fluxes
 - $\label{eq:phi} \Phi_e = 1.76 \, \pm \, 0.05 (\text{stat}) \, \pm \, 0.09 (\text{syst}) \, \times \, 10^6 \quad \ \text{cm}^{-2} \cdot \text{s}^{-1}$
 - $\Phi_{\mu\tau} = 3.41 \pm 0.45 (\text{stat}) \, {}^{+0.48}_{-0.45} (\text{syst}) imes 10^6 \, \text{cm}^{-2} \cdot \text{s}^{-1}$
- References
 - ▶ Q.R. Ahmad et al., (SNO-Collaboration), PRL87(2001)071301-1,
 - Q.R. Ahmad et al., (SNO-Collaboration), PRL89(2002)011301-2

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Borexino - the detector - 1

- Liquid scintillation detector at the Gran Sasso laboratory, Italy, at the depth of 3800 mwe
 - \blacktriangleright muon flux suppressed by ${\sim}10^6$
- Scintillator: 300 tons of pseudocumene
- Outer diameter (water tank) 18 metres, inner diameter (scintillator) 13.7 m
- ▶ PMT's: 2212 (8") for inner volume and 208 (8") for outer volume
- ► The main goal is to measure solar neutrinos of ⁷Be (electron capture, 862 keV)
 - scintillation detector for low-energy neutrinos: good light yield (compare with water Cherenkov), but no direction information

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- The energy threshold ${\sim}200~{\rm keV}$
 - set mainly by contamination from ¹⁴C
- Operated in full scale ${\sim}1$ year

Borexino - the detector - 2

- Enormous amount of work has been carried out to obtain Borexino as ultra-pure experiment
 - ultra-pure: radioactive contamination as low as possible
 - detector materials need to be several order of magnitude cleaner (less radioactive) than, for example, drinking water
- The main requirement
 - radioactive contamination below the expected interaction rate of 0.5 counts/(day·ton) for ⁷Be
- ► The observed radioactive background much lower than expected
 - also CNO and pep, and possibly pp and ⁸B
 - also geoneutrinos and supernova neutrinos
- All neutrino flavours are detected by ES, and for electron anti- $\nu's$ also by inverse β -decay (on protons and carbon)
 - the recoil energy of electrons or positrons is converted into scintillation light

Borexino - the detector - 3

Borexino - the detector - 4

Borexino - preliminary results for ⁷Be

Borexino - first results and future

- Scattering rate of ⁷Be solar-*ν* on electrons 47 ± 7_{STAT} ± 12_{SYS} counts/day/100 tons [astro-ph 0708.2251v2]
- Measure ⁷Be neutrino flux with high precision (< 10%)
- Extend ⁸B neutrino spectrum to low energies spectrum shape gives information for oscillation
- Measure flux of CNO neutrinos
- Prototype for LENA (Low Energy Neutrino Astronomy) which is one of the LAGUNA detectors

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●