Timo Enqvist University of Oulu Oulu Southern institute

lecture cource on

Astroparticle physics

15.09.2009 - 15.12.2009

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

9 Background in underground experiments Content

- 9.1 Primordial isotopes
- 9.2 Cosmogenic isotopes
- 9.3 Artificial isotopes
- 9.4 Natural radioactivity
- 9.5 Natural radioactivity as background
- ▶ 9.6 Cosmic-ray induced activity as background

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- 9.7 Artificial radioactivity as background
- ▶ 9.8 Examples

9 Background in underground experiments General

- The radioactive isotopes found in the nature are generally divided into three groups
 - primordial isotopes
 - cosmogenic isotopes
 - artificial isotopes
- The natural radioactivity is common in rock and soil, oceans, lakes and rivers, and in construction materials
 it exist everywhere
 - Mostly harmless for humans, animals and plants, but can be extremely harmfull for sensitive physics experiments

9.1 Primordial isotopes

General

- Older than the Earth
- Typically very long lived, lifetime billions of years
- For example

	²³² Th ²³⁸ U ²³⁵ U	1.41×10^{10} yr 4.47×10^{9} yr 7.04×10^{8} yr	thorium series uranium series actinium series	at the soil δ =99.2745%, at the soil δ =0.72%
	²³⁷ Np	$2.2 \times 10^6 \text{ yr}$	neptunium-sarja	
	⁴⁰ K	$1.28{ imes}10^9~{ m yr}$	$\delta = 0.012$	%, 0.04–1.1 Bq/g at soil
	Others:	⁵⁰ V, ⁸⁷ Rb, ¹¹³ C	Cd, ¹¹⁵ In,, ¹⁹⁰ Pt,	²⁰⁹ Bi
•	²²⁶ Ra ²²² Rn	1.60×10 ³ yr 3.82 d	member of urani noble gas, memb	um series er of uranium series

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

As the final results of the four decay chains (thorium, uranium, actinium and neptunium) the heaviest stable isotopes are formed: ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb, ²⁰⁹Bi

9.1 Primordial isotopes

Radioactive series

9.2 Cosmogenic isotopes

General

- Radioactive isotopes produced by cosmic-ray-induced interactions
- Cosmic-ray radiation can be divided into two classes: primary and secondary cosmic rays
 - at upper atmosphere interaction with primary (and high-energy) particles
 - closer to the surface interactions with secondary (and lower-energy) particles (electrons, muons, protons, neutrons, photons, ...)
 - → interactions between cosmic-ray particles and atoms in the atmosphere and the soil
- Typically lighter and much shorter-living that primordial isotopes
- ► For example
 - ► ¹⁴C 5730 yr ¹⁴N(n,p)¹⁴C 0.22 Bq/g in organic

materials

- ³H 12.3 yr CR: N,O; spall: ⁶Li(n,α)³H
 ⁷Be 53.3 d CR: N,O
 Others: ¹⁰Be, ²⁶Al, ³⁶Cl, ^{37,39}Ar, ..., ³⁸Mg, ⁸⁰Kr

9.2 Cosmogenic isotopes

in germanium – 1

Radioactive isotopes created in a Ge crystall during 10 days by cosmic-ray induced reactions. Then taken underground (Gran Sasso) for one year and measured.
 ([H.V. Klapdor-Kleingrothaus *et al.*, NIM A481 (2002) 149])

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

9.2 Cosmogenic isotopes

in germanium – 2

Isotope	Decay	<i>T</i> _{1/2}	Energia kiteesen	Aktivity
	Mode	,	[keV]	$[\mu {\sf Bq}/{\sf kg}]$
³ Н	β^{-}	12.33 yr	$E_{\beta^-} = 18.6$	3.6
⁴⁹ V	EC	330 d	$E_{\mathcal{K}}(Ti){=}5$, no γ	0.79
⁵⁴ Mn	$EC{+}\beta^{+}$	312.3 d	E_{γ} =840.8, $E_{K}(Cr)$ =5.5	10.3
⁵⁵ Fe	EC	2.73 yr	$E_{\mathcal{K}}(Mn){=}6$, no γ	0.52
⁵⁷ Co	EC	271.8 d	E_{γ} =20.81, E_{K} (Fe)=6.4	1.17
⁵⁸ Co	$EC+\beta^+$	70.9 d	E_{γ} =817.2, E_{K} (Fe)=6.4	0.49
⁶⁰ Co	β^{-}	5.27 yr	$E_{\beta^-} = 318, E_{\gamma} = 1173, 1133$	0.24
⁶³ Ni	β^{-}	100.1 yr	$E_{\!eta^-}\!=\!$ 66.95, no γ	0.01
⁶⁵ Zn	$EC{+}\beta^{+}$	244.3 d	$E_{\gamma} = 1124.4, E_{\kappa}(Cu) = 8-9$	9.08
⁶⁸ Ge	EC	270.8 d	$E_{\kappa}(Ga) = 10.37$	676
⁶⁸ Ga	$EC{+}\beta^+$	67.6 m	<i>Q</i> -value=2921.1	676

9.3 Artificially produced isotopes

General

- Artificial production of radioactive isotopes started in 1930's and 1940's and is since then cumulated in the nature mainly by nuclear weapon test and operation of nuclear power plants
 - amounts of articifially produced isotopes are, however, quite small
 - their lifetimes are, usually, also small compared to those of primordial or cosmogenic isotopes
- Examples

►	³ Н	12.3 yr	weapon tests and production, reactors
►	¹³¹	8.04 d	fission product of weapon test and reactors,
			medical applications
►	¹²⁹	$1.57{ imes}10^7$ yr	weapon tests and production, reactors
►	¹³⁷ Cs	30.17 yr	weapon tests and production, reactors
►	⁹⁰ Sr	28.78 yr	weapon tests and production, reactors
►	⁹⁹ Te	$2.11{ imes}10^5$ yr	decay product of ⁹⁹ Mo used for medical
			applications

238
U + n \longrightarrow 239 Np (β^{-}) \longrightarrow 239 Pu

The soil activity

Estimation

A one square-mile area and one-foot thick piece of soil, having the total volume of approximately 8×10^5 m³.

Element	Activity	Mass	Total activity
Uranium	25 Bq/kg	2200 kg	31 GBq
Thorium	40 Bq/kg	12000 kg	52 GBq
Potassium (⁴⁰ K)	400 Bq/kg	2000 kg	500 GBq
Radium	48 Bq/kg	1.7 g	63 GBq
Radon	10 kBq/m^3	$11~\mu{ m g}$	7 GBq
TOTAL			>653 GBq

Typical values have been used, local variations exist

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Radioactivity in rock

The oceanic activity

Amounts of water (volumes) [Ref. 1990 World Almanac]

- Pasific Ocean = $6.6 \times 10^{17} \text{ m}^3$
- Atlantic ocean = $3.1 \times 10^{17} \text{ m}^3$
- \blacktriangleright All oceans = 1.3 \times 10 18 m 3

Element/	Activity	Oceanic activity		ity		
lsotope		Pasific	Atlantic	All		
Uranium	33 mBq/l	22 EBq	11 EBq	41 EBq		
⁴⁰ K	11 Bq/l	7400 EBq	3300 EBq	14000 EBq		
Tritium	0.6 mBq/l	370 PBq	190 PBq	740 PBq		
¹⁴ C	5 mBq/l	3 EBq	1.5 EBq	6.7 EBq		
⁸⁷ Rb	1.1 Bq/l	700 EBq	330 EBq	1300 EBq		

Ref. 1971 Radioactivity in the Marine Environment, National Academy of Sciences

In construction materials

Material		Uranium		Thorium		Potassium
	ppm	[mBq/g]	ppm	[mBq/g]	ppm	[mBq/g]
graniite	4.7	63	2	8	4	1184
sandstone	0.45	6	1.7	7	1.4	414
cement	3.4	46	5.1	21	0.8	237
limestone	2.3	31	2.1	8.5	0.3	89
concrete						
sandstone	0.8	11	2.1	8.5	1.3	385
concrete						
dry wallboard	1.0	14	3	12	0.3	89
Figures are typical values						

rigures are typical values

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

9.5 Natural radioactivity as background

Radioactive series - 1

- ► Uranium (Z = 92) and thorium (Z = 90) isotopes and their daughter activities (like radon, Z=86) exist as impurities in all materials found in the nature
 - ► Th-series : ²³²Th
 - U-series : ²³⁸U
 - \rightarrow the problem comes usually from ²⁰⁸TI and ²¹⁴Bi (γ -rays)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Ac-series : ²³⁵U
- Protection, by liquid purification or clean method of material production
 - liquid scintillation detectors
 [J.B. Benzinger et al., NIM A417 (1998) 278]
 - electrolytically manufactured copper [R.L. Brodzinski et al., NIM A292 (1990) 337]
 - CVD (Chemical Vapor Deposited) nickel [J. Boger et al., NIM A449 (2000) 172]

9.5 Natural radioactivity as background

Radioactive series - 2

• For the (neutrinoless) double β -decay

- lifetimes of the decay chains are proportional to the age of the universe, but they are small compared to the (neutrinoless) double β-decay activities
 - → only a small amount of Uranium or Thorium isotopes may cause difficulties
 - \rightarrow ²⁰⁸Tl and ²¹⁴Bi have high *Q*-values
- Isotopes ³H, ¹⁴C, and ⁴⁰K have low Q-value
 - do not generally disturb $\beta\beta$ -experiments
 - \blacktriangleright do disturb those $\beta\beta\text{-experiments}$ in which the sensitivity is low enough for dark matter searches

 \rightarrow WIMPs elastic scattering \rightarrow low energy

9.5 Natural radioactivity as background Radon

- ► Radon (²²⁰Rn ja ²²²Rn)
 - $T_{1/2}(^{220}\text{Rn}) \approx 1 \text{ min}$
 - $T_{1/2}(^{222}$ Rn) \approx 4 days ("nasty")
 - gaseous material
 - → travels easily in all places
 - → diffuses easily through materials
 - daughter activities stack easily on dust or electrostatic surfaces

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- protection
 - → tight structure, overpressure
 - → efficient air condition

9.6 Cosmic-ray induced activity as background

Cosmogenics - 1

- There are several various cosmic-ray induced reactions that may produce long-lived radioactive isotopes
 - muons, neutrons, protons, …
 - decay energy (Q-value) varies from low to high energies
 - → high-energy part may cause problems for double β-decay experiments (2–3 MeV)
 - \rightarrow low-energy part may cause problems for dark matter searches (– 100 keV)
- Cosmogenics can be produced in the detector material or in the detector schielding material
 - ▶ for example, ⁶⁸Ge (T_{1/2} = 271 d) is created in interactions of fast neutrons (E > 100 MeV) and ⁷⁶Ge (stable)
 - fast neutrons (and other particles, as electrons) are produced by high-energy muons
 - → anti-coindicence with arriving muon helps to reduce fastneutron induced events but it does not help to reduce cosmogenics of being created in the detector

9.6 Cosmic-ray induced activity as background Cosmogenics – 2

9.7 Artificial radioactivity as background

- Nuclear bomb test at the atmosphere
 → 10⁵ Bq ^{239,240}Pu spread at the Earth surface
- Accidents in nuclear power plants
 → long-lived isotopes ⁹⁰Sr, ¹³⁷Cs, Pu spread in the environment

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- → radioactive noble-gas isotopes 42 Ar and 85 Kr
- Artificial radioactivity is not usually a problem for sensitive physics experiments

9.8 Example: Gamma-ray background

Measured at Pyhäsalmi mine at the depth 75 m

9.8 Example of background spectrum

in double β -decay – 1

- Detector: Gd₂SiO₅:Ce (GSO) (Cerium-doped gadolinium silicate scintillation detector)
- Solotvina Underground Laboratory, salt mine 430 metres underground (1000 mwe) ≥ 10⁸ 150 × 150 × 150
- Measurement time: 13950 h
- The size of GSO crystal: 95 cm³
- ► Muons: 1.7×10⁻⁶ cm⁻²·s⁻¹
- Neutrons: 2.7×10⁻⁶ cm⁻²·s⁻¹
- Radon in air:
 < 30 Bq/m³

9.8 Example of background spectrum

in double β -decay – 2

General

- Currently the most sensitive detector in neutrino physics
 - 278 tons of liquid scintillator and 889 tons of buffer shielding
- Main aim to measure the 862-keV ⁷Be neutrino flux from the Sun
 - \blacktriangleright the flux, according to the standard solar model, at the Earth surface is ${\sim}4.3{\times}10^9~{\rm cm}^{-2}{\cdot}{\rm s}^{-1}$
- ► That flux produces 0.5 event/day/ton of scintillation material from νe scattering
- The liquid scintillator is a solution of 1.5 g/l of PPO (2,5-diphenyloxazole) in pseudocumene (1,2,4-trimethylbenzene, PC)
 - chosen due to relatively simple purification process and appropriate scintillation properties

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

In order to detect the flux of this order requires radiopurity levels shown in the table next page

Radiopurity requirements

Radioisotope	Source	Typical level in scintillator without purification	Removal strategy	Design level (<1 cpd/100 ton)
¹⁴ C	Cosmic ray activation of ¹⁴ N	$^{14}\text{C}/^{12}\text{C}{\sim}10^{-12}.$ Corresponds to equilibrium from cosmic radiation at earth's surface	Petroleum derivative (old carbon)	$^{14}\mathrm{C}/^{12}\mathrm{C}{\sim}10^{18}$
⁷ Be	Cosmic ray activation of ¹² C	2.7×10^3 cpd/ton. Corresponds to equilibrium for cosmic ray activation of ^{12}C to 7Be at earth's surface	Distillation and underground storage of scintillator	< 0.01 cpd/ton
²²² Rn	Air and emanation from	$1.3\times 10^7cpd/ton.$ Corresponds to equilibrium Rn absorption into PC for air with $^{222}Rn=10100Bq/m^3air$	Nitrogen stripping	< 0.01 cpd/ton
²¹⁰ Bi	²¹⁰ Pb decay	2×10^4 cpd/ton. Corresponds to ²¹⁰ Pb decay after exposing surface of the containment vessel to air with 10 Bq/m ³ ²²² Rn for 1 war	Surface cleaning	
²¹⁰ Po	²¹⁰ Pb decay	for 1 year. 2×10^4 cpd/ton. Corresponds to ²¹⁰ Pb decay after exposing surface of the containment vessel to air with 10 Bq/m ³ ²²² Rn for 1 year	Surface cleaning	
²³⁸ U	Suspended dust, organometallics	10^4 cpd/ton (includes the 238 U → 206 Pb decay chain) < 10^{-12} g-U/g-scintillator Corresponds to 1 g-dust suspended in 1 ton of scintillator. Dust has U content equal to average of earth's crust, 10^{-6} g-U/g-dust	Distillation, filtration	<10 ⁻¹⁷ g-U/g- scintillator
²³² Th	Suspended dust, organometallics	$10^4 \rm cpd/ton{<}10^{-12} g\text{-}Th/g\text{-}scintillator.$ Corresponds to 1 g-dust suspended in 1 ton of scintillator. Dust has Th content equal to average of earth's crust, $10^{-5} g\text{-}Th/g\text{-}dust$	Distillation, filtration	<10 ⁻¹⁷ g-Th/g- scintillator
⁴⁰ K	Contaminant found in fluor	2700 cpd/ton~ 10^{-9} g-K/g-scintillator Corresponds to scintillator with 1.5 g-PPO/L and PPO has 10^{-6} g-K/g-PPO.	Water extraction, filtration and distillation of fluor solution	<10 ⁻¹⁴ g-K/g- scintillator
³⁹ Ar	Air	200 cpd/ton. Corresponds to equilibrium Ar absorption into PC for air with $^{39}\text{Ar}=13m\text{Bq}/m^3air$	Nitrogen stripping, leak- tight system	$< 500 nBq / m - N_2$
⁸⁵ Kr	Air	$4.3\times 10^4cpd/ton.$ Corresponds to equilibrium Kr absorption into PC for air with $^{85}\!Kr=Bq/m^3air$	Nitrogen stripping, leak- tight system	$< 100 nBq/m^3 - N_2$

Purification

- Distillation
 - the most effective process to improve the optical clarity of the scintillator
 - highly effective of reducing several of the radioactive impurities in the scintillator – does not remove noble-gas impurities Ar, Kr and Rn
- Nitrogen stripping
 - Ar, Kr and Rn could also be removed using a second line of distillation column
 - in Borexino noble-gases are removed using a separate gas-stripping operation (nitrogen)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- PPO
 - commercial product, with too high contamination level of K (level of ppm)
 - purified by modified distillation process

The detector and purification system

