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A. General things
The lecture cource

I 6 credit units,
suitable for advanced studies and Ph.D. studies

I Lectures 39 h (= 13 × 3h) every tuesday at 14 – 17,
first 15.09. and last 15.12.

I Lecturer: Timo Enqvist (timo.enqvist@oulu.fi)
I Excercises 12 h (= 6 × 2h), date & time to be fixed

(proposition: tuesday 10 – 12, starting 06.10.)
I Examination methods and dates to be fixed

I normal way (exam)
I (comprehensive) literature work
I data analysis, simulations, ...

I Lecture notes available at http://cupp.oulu.fi/timo

I Is introductory lecture on particle and nuclear physics, on particle
interactions and cross sections and on detection methods needed/
wanted ?
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A. General things
Astroparticle physics

I Definition for astroparticle physics (at the present lecture cource)
I research of particle and nuclear physics without accelerators
I natural (astronomical) sources and phenomena studied by

means of particle and nuclear physics
I in most cases studied deep underground
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B. Lecture Contents
Astroparticle physics: topics and tentative schedule

I high-energy cosmic rays (15.09. and 22.09.) +

I past, current and future experiments (06.10.)
I Sun (stars) and solar neutrinos (13.10.)
I supernovae, supernova and relic supernova neutrinos (20.10.)
I atmospheric and geoneutrinos (27.10.)
I double beta-decay (03.11.)
I dark matter (10.11.)
I proton decay (17.11.)
I background in underground measurements (24.11.)
I cosmic microwave background, Big Bang nucleosynthesis (01.12.)
I gravitational waves (08.12.)
I (15.12.)
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C. Literature & Articles
Astroparticle physics

I Thomas G. Gaisser: Cosmic Rays and Particle Physics, Cambridge
University Press, 1990

I Pierre Sokolsky: Introduction to Ultrahigh Energy Cosmic Rays
Physics, Westview Press, 2004

I Claus Grupen: Astroparticle Physics, Springer, 2005
I John N. Bahcall: Neutrino Astrophysics, Cambridge University

Press, 1989
I Donald Perkins: Particle Astrophysics, Oxford University Press, 2003
I Claus E. Rolfs and William S. Rodney: Cauldrons in the Cosmos,

The University of Chicago Press, 1988
I Donald H. Perkins: Introduction to High Energy Physics, Cambridge

University Press, 2000
I Kai Zuber: Neutrino Physics, IOP Publishing Ltd, 2004
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1 High-energy cosmic rays
Content

1. General
2. Energy spectrum
3. Extensive Air Shower (EAS)
4. EAS detection and experiments
5. Cosmic-ray sources

1 High-energy cosmic rays – 1.1 –
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1.1 Cosmic rays
General

I Cosmic rays at high energies are particles hitting on earth, most
probably atomic nuclei (hydrogen – iron), but the exact composition
is not known and depends on the energy

I High-energy cosmic rays studied already for several decades by many
various arrays (deep underground, at the surface, at the mountins)

I cosmic-ray experiment started at the beginning of the century
I the knee was introduced at the end of 1950’s

I In the present lecture, high-energy cosmic ray means that Ecr > 1014
eV (= 100 TeV)

I flux so low that currently direct measurements are not possible
I Research still very active at high energies (knee and above) – tens

of different experiments
I at the knee–ankle region: KASCADE-Grande
I at the highest energies: Pierre Auger Observatory

I General aim of cosmic-ray research: find out sources and origin,
acceleration and propagation mechanisms, etc.

1 High-energy cosmic rays – 1.2 –
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1.1 Cosmic rays
General

I Due to low flux and bending (diffusion) in galactic magnetic field,
sources can not be observed, located or studied directly
+ analysis of cosmic-ray origin, sources and acceleration

mechanisms is based on the measurement of cosmic-ray
composition

I at high energies also indirect measurement of composition
+ Extended Air Showers (EAS)

I Results very model dependent
I interactions at these high energies not known accurately enough

+ no accelerator data
I LHC at CERN may help

I Large fluctuations, like the depth (height) of the first interaction,
can also exist

I No firm conclusions yet for the cosmic-ray composition above the
knee region

1 High-energy cosmic rays – 1.3 –
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1.2 Cosmic-ray energy spectrum
Energy vs. flux

I Energy spectrum (flux vs. energy) is
quite reliably known

I the slope is very deep:
dN/dE ∝ E−(γ+1), γ ∼ 1.7

I The composition is poorly known due
to conflicting experimental results

I composition : light/heavy -ratio
I Three features in the spectrum

I knee at E ∼ 1015 – 1016 eV
+ different production or

acceleration mechanism
I ankle at E ∼ 1018 – 1019 eV

+ transition from galactic sources
to extra-galactic

I GZK-cutoff at E ∼ 6 × 1020 eV
+ collision with CMB

1 High-energy cosmic rays – 1.4 –
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1.2 Cosmic-ray energy spectrum
Spectrum features: knee, ankle and GZK

1 High-energy cosmic rays – 1.5 –
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1.2 Cosmic-ray energy spectrum
Comparison with accelerator energies

1 High-energy cosmic rays – 1.6 –
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1.3 Extensive Air Shower
EAS

I Particle cascades developing in the
atmosphere

I approximately all known particles
produced

I Initiated by energetic primary cosmic
particles at high altitude

I tens (hundreds) of pions (π0, π± )
created

I Contains electromagnetic, muonic,
hadronic and neutrino components

I see next page
I For the identification of the primary

particle and its energy, all physics
(interactions) of the EAS should be
known

1 High-energy cosmic rays – 1.7 –



Astroparticle physics, 2009

1.3 Extensive Air Shower
EAS components

1 High-energy cosmic rays – 1.8 –
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1.3 Extensive Air Shower
pions and kaons

I The thickness of the atmosphere H∼1000 g/cm2

I increases for inclined showers as 1/cos(θ)
I at 35–40 km, h∼10 g/cm2 (balloon flights)
I at 15–20 km, h∼100 g/cm2 (first interaction)
I nuclear physics (Coulomb barrier), t∼0.5 mg/cm2

I (1 GeV/nucleon), t∼100 mg/cm2

I Characteristic interaction lengths
I radiation length for photons and electrons in air

X0 ≈ 37 g/cm2 (H∼25X0)
I interaction length for hadrons (protons, ...) in air
λ ≈ 90 g/cm2 (H∼10X0)

I First interaction ⇒ pions (π0, π±) and kaons (K0, K±)
I kaons/pions ∼ 0.1
I m(π±) = 140 MeV (0.15 mp), τ(π±) = 26 ns
π+ −→ µ+ + νµ, π− −→ µ− + ν̄µ

I m(K±) = 494 MeV, τ(K±) = 12 ns
K+ −→ µ+ + νµ, K− −→ µ− + ν̄µ (63 %)

1 High-energy cosmic rays – 1.9 –
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1.3 Extensive Air Shower
muons and electrons

I Electrons produced by π0, K0 −→ γ’s −→ e± and by muon
decay

I Muons produced by decays of pions and kaons
I m(µ±) = 106 MeV, τ(µ±) = 2.2 µs
µ+ −→ e− + ν̄e + νµ, µ− −→ e+ + νe + ν̄µ

I Competition between decay and interaction
I function of energy at 1 TeV, λ(π) ∼ 10 %

λ(K) ∼ 30 %
I interaction (with air) produces more particles (more

pions and kaons) than decay
I Muons loss only approximately 2 GeV of their energy in the

atmosphere
I penetrating component

I Shower development in the atmosphere +
I longitudinal development (Xmax)
I lateral distribution

1 High-energy cosmic rays – 1.10 –
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1.3 Extensive Air Shower
EAS longitudinal development

1 High-energy cosmic rays – 1.11 –
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1.3 Extensive Air Shower
EAS lateral distribution

1 High-energy cosmic rays – 1.12 –
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1.3 Extensive Air Shower
EAS longitudinal development parametrisations

I Number of particles at the shower maximum (Xmax) can be
expressed as

Nmax = (1.1− 1.6) · E0[GeV]

where E0 is the primary-particle energy
(at the knee Nmax ∼ 106, at the ankle Nmax ∼ 109)

I The longitudinal development of number of electrons in
proton-initiated shower, the electron size, can be expressed as

Ne(X) = Nmax ·
( X − X0
Xmax − X0

)(Xmax−X0)/λ

· exp
(Xmax − X

λ

)
X is the depth of the observation and X0 the initial interaction as
g/cm2 and λ = 70 g/cm2

I Xmax ∝ E0/A =⇒ ∆Xmax ∝ ln A =⇒ Xmax(p) – Xmax(Fe) ≈ 100
g/cm2

1 High-energy cosmic rays – 1.13 –
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1.3 Extensive Air Shower
EAS lateral distribution parametrisations

I For electrons:
Nishimura – Kamata – Greisen (NKG) parametrisation

ρch(r) =
Nch

2πr20
· C ·
( r
r0

)s−2
·
(
1 +

r
r0

)s−4.5
Nch is the total number of charged particles (e±, µ±), s is the
age paramerer, r0 is the Moliére radius (≈ 79 m at sea level),
C is constant:

C =
Γ(4.5− s)

Γ(s) · Γ(4.5− 2s)
Based on theoretical description of purely electromagnetic shower,
but approximatively correct also for muons (with effective age of
1.25)

1 High-energy cosmic rays – 1.14 –



Astroparticle physics, 2009

1.3 Extensive Air Shower
EAS lateral distribution parametrisations

For muons
I Greisen parametrisation

ρµ(r) = 18 · r−0.75 ·
(
1 +

r
320

)−2.5
·
( Ne
106
)0.75

muons/m2

I Tien-Shan experiment parametrisation

ρµ(r) = 5.95× 10−4 · r−0.7 · exp
(
− r

80 m

)

1 High-energy cosmic rays – 1.15 –
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1.3 Extensive Air Shower
EAS analysis scheme

1 High-energy cosmic rays – 1.16 –
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1.3 Extensive Air Shower
EAS detection possibilities & methods

1 High-energy cosmic rays – 1.17 –
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1.4 EAS detection
The Pierre Auger Observatory: Auger South

1 High-energy cosmic rays – 1.18 –
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1.4 The Pierre Auger Observatory
Water Cherenkov surface detectors

1 High-energy cosmic rays – 1.19 –
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1.4 The Pierre Auger Observatory
Water Cherenkov surface detector

1 High-energy cosmic rays – 1.20 –
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1.4 The Pierre Auger Observatory
Hydrid Measurement: Water Cherenkov’s & Fluorescense detector

1 High-energy cosmic rays – 1.21 –
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1.4 The Pierre Auger Observatory
A detected high-energy cosmic particle

1 High-energy cosmic rays – 1.22 –
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1.4 The Pierre Auger Observatory
Energy of the primary particle

1 High-energy cosmic rays – 1.23 –
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1.4 The Pierre Auger Observatory
Cosmic-ray flux at highest energies

1 High-energy cosmic rays – 1.24 –
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1.4 Cosmic-ray flux at the GZK-cutoff
Combined measurements

1 High-energy cosmic rays – 1.25 –
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1.4 The Pierre Auger Observatory
Composition (mean depth of shower maximum)

1 High-energy cosmic rays – 1.26 –
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1.4 EAS detection
The Pierre Auger Project: Auger South & Auger North

1 High-energy cosmic rays – 1.27 –
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1.4 KASCADE–Grande
Leading experiment at knee – ankle region

KArlsruhe Shower 
Core and Array 
DEtector

T. Antoni et al, Nucl. Instr. & Meth. A 513 (2004) 490
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1.4 KASCADE–Grande
Analysis prodecure

1 High-energy cosmic rays – 1.29 –
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1.4 KASCADE–Grande
Analysis prodecure: unfolding

1 High-energy cosmic rays – 1.30 –
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1.4 KASCADE–Grande
Element group analysis

1 High-energy cosmic rays – 1.31 –
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1.4 EAS Experiments
Page 1 (Table from A. Haungs et al., Rep. Prog. Phys. 66 (2003) 1145–1206)

1 High-energy cosmic rays – 1.32 –
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1.4 EAS Experiments
Page 2 (Table from A. Haungs et al., Rep. Prog. Phys. 66 (2003) 1145–1206)
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1.4 EAS Experiments
Page 3 (Table from A. Haungs et al., Rep. Prog. Phys. 66 (2003) 1145–1206)

1 High-energy cosmic rays – 1.34 –
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1.4 EAS Detection
Special Topic: High muon multiplicities

I Events with high muon multi-
plicities were observed by
DELPHI, ALEPH and L3+C
detectors of LEP

I Effective running time only
about a month

I Origin is not clear: cosmic-ray
models are not able to explain
observed multiplicities

I would require heavier that
Fe for highest multiplicities

I Tentatively observed also at
LHC

I EMMA can also measure
high-multiplicity events DELPHI Collab., APP 28 (2007) 273–296, Study of multi-muon bundles

in cosmic ray showers detected with the DELPHI detector at LEP

1 High-energy cosmic rays – 1.35 –
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1.4 EMMA – Experiment with MultiMuon Array
Cosmic-ray experiments in Pyhäsalmi

I New type of cosmic-ray experiment
+ at the depth of 75 metres in

Pyhäsalmi mine
I Studying high-energy cosmic rays

+ composition at the knee region
I Idea: the rock overburden filters out

low-energy muons (cutoff ∼50 GeV)
High-energy muons more sensitive on the
primary particle than low-energy muons

I New type of experiment: measuring
muon multiplicity and their lateral spread
at the shallow depth

I Also the arrival direction of the shower is
measured by tracking

1 High-energy cosmic rays – 1.36 –
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1.4 EMMA
Experiment with MultiMuon Array

I The design started 2005,
construction 2006 and will be
ready 2010
+ measurements can be started

already this year
+ duration: 5–10 years

I Consists of nine detector units
(cottages) each of 15 m2

I Detector area 130 m2 (in one
level), alltogether 250 m2

I Detectors are drift chambers otained from CERN
(DELPHI-experiment at LEP collider) and new-design
small-size plastic scintillation detectors (especially
designed for EMMA)

1 High-energy cosmic rays – 1.37 –
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1.4 EMMA
The cottages – outside view

1 High-energy cosmic rays – 1.38 –

Inside the cottages
RH∼40–60 %
T∼15-20 ◦C
+ good laboratorory

conditions

The cavern
pH∼3 (water)
RH∼100 %
T∼(9±1) ◦C
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1.4 EMMA
The cottages – inside view

1 High-energy cosmic rays – 1.39 –
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1.4 EMMA
Shower axis determination for 4-Pev proton-induced showers

1 High-energy cosmic rays – 1.40 –



Astroparticle physics, 2009

1.4 EMMA
Muon lateral distribution functions

LDF parametrisation

ρ(r) =
Nµ

2π · 0.11 · R2
0
· ( r

R0
)−0.4 · (1 +

r
R0

)−5

r is the distance from the shower core,
Nµ is the total number of muons,
R0 is related to the gradient of the LDF
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EMMA-koe
Kollaboraatio & Kiitokset

1 High-energy cosmic rays – 1.42 –
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