Neutriinojen kulku väliaineessa | |||
Neutriino-optiikkaaKulkiessaan aineessa neutriinon vuorovaikutukset aineen hiukkasten kanssa vaikuttavat sen kulkuun. Harvassakin aineessa koherentti sironta etusuuntaan muuttaa aaltofunktion vaihetta. Ilmiö on analoginen valon taittumiseen, ja neutriinollekin voidaan määritellä taitekerroin. Neutriinon taitekerroin tiheimmissäkin aineissa on niin pieni, että taittumista sinänsä ei voida havaita. Eri neutriinojen taitekertoimet ovat kuitenkin erilaisia, mikä vaikuttaa ratkaisevasti neutriino-oskillaatioon. Soveltamalla valon taittumista kuvaavia malleja neutriinoille tai käytämällä potentiaaliteoriaa neutriinon kulku väliaineessa voidaan mallintaa helposti. Monissa tapauksissa yksinkertainen malli onkin riittävä, ja useimmat fyysikot uskovatkin ymmärtävänsä materiailmiön täydellisesti. Tämä on kuitenkin harhaa, sillä ei ole itsestään selvää, etta kaikki implisiittisesti tehdyt oletukset ovat voimassa joka paikassa. Itse asiassa ne useinkaan eivät päde, ja neutriinon kulkua pitäisikin tarkastella paljon eksaktimmin. Mallien mekaaninen soveltaminen olosuhteisiin, joissa ne eivät ole voimassa, on johtanut useisiin vääriin tuloksiin, kuten ei-diagonaalisiin taitekertoimiin, jotka elävät edelleen sitkeässä.
Neutriinojen diffuusioErittäin tiheässä aineessa, kuten supernovan sisuksissa, neutriinot eivät enää kulje vapaasti. Vuorovaikutukset tulevat niin voimakkaiksi, että neutriinojen vapaa matka on alle metrin. Neutriinot pakenevat supernovasta diffuusiolla.Neutriinojen diffuusion mallintaminen on hyvin vaikeata. Analyyttinen käsittely on mahdotonta, ja numeerisetkin ratkaisut tuottavat suuria vaikeuksia. Toistaiseksi ainoa periaatteessa tarkka menetelmä on Monte Carlo simulaatio. Koska täydellinen simulointi vaatii useita satoja tunteja tietokoneaikaa, on useimmin pakko turvautua halvempiin mutta epätarkkoihin menetelmiin. Neutriinodiffuusion käsittely on edelleen suurin pullonkaula supernovan simuloinnille.
LisätietojaNeutriinojen tietosivu (englanniksi): numerotietoja neutriinojen ominaisuuksista. | |||
Juha Peltoniemi |